斯特林数分为第一类斯特林数:S1(n,k)和第二类斯特林数:S2(n,k)。

S1(n,k)代表在n个元素中选出k个环的方案数,S2(n,k)代表在n个元素中选出k个非空集合的方案数,

不同之处在于,在第一类斯特林数中我们在意这些环的顺序,在第二类斯特林数中我们不在意顺序,但在意集合中装了什么(感觉类似排列组合中的有序组合(P)和无序组合(C))。

第一类斯特林数的公式是:

S1(n,m)=(n-1)*S1(n-1,m)+S1(n-1,m-1)

如何推导出这些:

我们在n-1的时候可能有两种状态:

1.已有m个环, 从某个元素数>1的环中加入一个元素,转移到m个环的状态,环有顺序,共有n-1个元素,所以可以插入到任意一个元素的左边,因此有n-1个种可能

2.已有m-1个环,直接把这个元素作为一个新环,转移到m个环的状态,因为只加入一个环,所以没有其他状态

根据状态1得到(n-1)*S1(n-1,m);根据状态2得到S1(n-1,m-1),合起来就是第一类斯特林数公式:S1(n,m)=(n-1)*S1(n-1,m)+S1(n-1,m-1)

第二类斯特林数的公式是:

S2(n,m)=m*S2(n-1,m)+S2(n-1,m-1)

如何推导出这些:

在n-1的时候可能有两种状态:

1.已有m个集合,因为不考虑顺序,可以插入m个集合中任意的集合,所以有m种可能

2.已有m-1个集合,直接把这个元素作为一个新集合,没有其它状态

根据状态1得到m*S1(n-1,m);根据状态2得到S1(n-1,m-1),合起来就是第二类斯特林数公式:S2(n,m)=m*S2(n-1,m)+S2(n-1,m-1)

【OI】关于斯特林数的简单理解的更多相关文章

  1. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

  2. 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation

    目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...

  3. BZOJ5093图的价值(斯特林数)

    题目描述 “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对 ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)

    题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...

  5. 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

    [题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...

  6. CF961G Partitions(第二类斯特林数)

    题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...

  7. 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...

  8. [转]简单理解Socket

    简单理解Socket 转自 http://www.cnblogs.com/dolphinX/p/3460545.html  题外话 前几天和朋友聊天,朋友问我怎么最近不写博客了,一个是因为最近在忙着公 ...

  9. Deep learning:四十二(Denoise Autoencoder简单理解)

    前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Be ...

随机推荐

  1. 服务器中打开IIS管理器

    1.选远程连接服务器,然后开始>控制面板>打开或关闭Windows功能>服务器管理器>web服务器>internet信息服务的展开下一项即可,如图:

  2. JZOJ5776. 【NOIP2008模拟】小x游世界树

    题目:[NOIP2008模拟]小x游世界树: 题目的附加题解给的很清楚,这里只给一个代码: #include<iostream> #include<cstdio> #inclu ...

  3. 简谈Redis

    1.为什么使用redis 分析:博主觉得在项目中使用redis,主要是从两个角度去考虑:性能和并发.当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中 ...

  4. mac apache 配置

    mac系统自带apache这无疑给广大的开发朋友提供了便利,接下来是针对其中的一些说明 一.自带apache相关命令 1. sudo apachectl start 启动服务,需要权限,就是你计算机的 ...

  5. Groovy常用语法汇总

    基本语法 1.Grovvy的注释分为//和/**/和java的一样. 2.Grovvy语法可以不已分号结尾. 3.单引号,里面的内容严格的对应java中的String,不对$符号进行转义. def s ...

  6. JavaScript中数据类型的转换规则

    JavaScript中数据类型的转换规则 制作人:全心全意 JavaScript是一种无类型语言,也就是说,在声明变量时无须指定数据类型,这使得JavaScript更具有灵活性和简单性. 在代码执行过 ...

  7. Win2008 Server搭建FTP服务器

    首先创建一个专门的FTP用户,当然也可以不创建. 用系统自带的超管用户. 设置用户名和密码.用户下次登陆必须修改密码记得去掉勾选. 在角色里面的WEB服务器找到添加角色服务.我之前有安装IIS. 没有 ...

  8. 全国高校json数据包(复python解析代码)

    由于这段时间需要有关学校的三级联动插件,找了很久没有找到合适的,所以去教育部官网下载了一份全国普通高校名单(2019年), 这里附上解析该xls文件的代码 import xlrd import jso ...

  9. 集训第五周动态规划 E题 LIS

    Description The world financial crisis is quite a subject. Some people are more relaxed while others ...

  10. 解决Antimalware Service Executable CPU,内存占用高的问题

    1.win键+R键打开运行对话框框,输入gpedit.msc打开本地组策略编辑器(组策略):2.依次打开计算机配置-管理模板-Windows组件-Windows Defender:3.如果要关闭Win ...