【OI】关于斯特林数的简单理解
斯特林数分为第一类斯特林数:S1(n,k)和第二类斯特林数:S2(n,k)。
S1(n,k)代表在n个元素中选出k个环的方案数,S2(n,k)代表在n个元素中选出k个非空集合的方案数,
不同之处在于,在第一类斯特林数中我们在意这些环的顺序,在第二类斯特林数中我们不在意顺序,但在意集合中装了什么(感觉类似排列组合中的有序组合(P)和无序组合(C))。
第一类斯特林数的公式是:
S1(n,m)=(n-1)*S1(n-1,m)+S1(n-1,m-1)
如何推导出这些:
我们在n-1的时候可能有两种状态:
1.已有m个环, 从某个元素数>1的环中加入一个元素,转移到m个环的状态,环有顺序,共有n-1个元素,所以可以插入到任意一个元素的左边,因此有n-1个种可能
2.已有m-1个环,直接把这个元素作为一个新环,转移到m个环的状态,因为只加入一个环,所以没有其他状态
根据状态1得到(n-1)*S1(n-1,m);根据状态2得到S1(n-1,m-1),合起来就是第一类斯特林数公式:S1(n,m)=(n-1)*S1(n-1,m)+S1(n-1,m-1)
第二类斯特林数的公式是:
S2(n,m)=m*S2(n-1,m)+S2(n-1,m-1)
如何推导出这些:
在n-1的时候可能有两种状态:
1.已有m个集合,因为不考虑顺序,可以插入m个集合中任意的集合,所以有m种可能
2.已有m-1个集合,直接把这个元素作为一个新集合,没有其它状态
根据状态1得到m*S1(n-1,m);根据状态2得到S1(n-1,m-1),合起来就是第二类斯特林数公式:S2(n,m)=m*S2(n-1,m)+S2(n-1,m-1)
【OI】关于斯特林数的简单理解的更多相关文章
- 如何快速求解第一类斯特林数--nlog^2n + nlogn
目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...
- 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation
目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...
- BZOJ5093图的价值(斯特林数)
题目描述 “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)
题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- CF961G Partitions(第二类斯特林数)
题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- [转]简单理解Socket
简单理解Socket 转自 http://www.cnblogs.com/dolphinX/p/3460545.html 题外话 前几天和朋友聊天,朋友问我怎么最近不写博客了,一个是因为最近在忙着公 ...
- Deep learning:四十二(Denoise Autoencoder简单理解)
前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Be ...
随机推荐
- 时间戳显示为多少分钟前,多少天前的JS处理
/* ** 时间戳显示为多少分钟前,多少天前的处理 ** eg. ** console.log(dateDiff(1411111111111)); // 2014年09月19日 ** console. ...
- Dijkstra+set堆优化局部模板
这是某天2018-10-25写的某题(P1613-luogu)的局部代码,目的是方便自己记忆一些细节,所以这里不过多赘述算法原理或题目 邻接矩阵mapp表示有向图 struct ELE { int i ...
- MYSQL每日一学 - 时间间隔表达式
参考链接:https://dev.mysql.com/doc/refman/5.7/en/expressions.html Interval表达式(Temporal intervals)的使用 Int ...
- Python:用户自定义异常
实际开发中,有时候系统提供的异常类型不能满足开发的需求.这时候你可以通过创建一个新的异常类来拥有自己的异常.异常类继承自 Exception 类,可以直接继承,或者间接继承. 1.自定义异常类型 #1 ...
- 谷歌应用商店chrome扩展程序和APP的发布流程
互联网上有很多大牛,他们再工作中需要一些难题,再找到解决办法后,如果会使用js的话,大多数人就可以自己动手写一个chrome插件,而且非常容易.开发人员都喜欢与大家分享自己的成就!google是一个全 ...
- 84-Market Facilitation Index 市场促进指数指标.(2015.7.3)
Market Facilitation Index 市场促进指数指标 MFI指标的计算方式为: MFI=High(最高价)-Low(最低价))/ Volume(成交量) MFI上升,成交量上升,表示价 ...
- 集训第四周(高效算法设计)F题 (二分+贪心)
Description A set of n<tex2html_verbatim_mark> 1-dimensional items have to be packed in iden ...
- 标准sqlserver连接语句
sqlserver左右全内连接 原始链接http://www.cnblogs.com/youzhangjin/archive/2009/05/22/1486982.html 连接条件可在FR ...
- vim学习之旅01-文本搜索并高亮显示
step 1:在linux终端新建一个test.txt文本文档:vim test.txt; 回车后打开编辑器: step 2:进入编辑状态(键盘"i")输入一段文本,退出编辑(键盘 ...
- B. Mr. Kitayuta's Colorful Graph,二维并查集,一个简单变形就可以水过了~~
B. Mr. Kitayuta's Colorful Graph -> Link <- 题目链接在上面,题目比较长,就不贴出来了,不过这是道很好的题,很多方法都可以做,真心邀请去A了这 ...