【OI】关于斯特林数的简单理解
斯特林数分为第一类斯特林数:S1(n,k)和第二类斯特林数:S2(n,k)。
S1(n,k)代表在n个元素中选出k个环的方案数,S2(n,k)代表在n个元素中选出k个非空集合的方案数,
不同之处在于,在第一类斯特林数中我们在意这些环的顺序,在第二类斯特林数中我们不在意顺序,但在意集合中装了什么(感觉类似排列组合中的有序组合(P)和无序组合(C))。
第一类斯特林数的公式是:
S1(n,m)=(n-1)*S1(n-1,m)+S1(n-1,m-1)
如何推导出这些:
我们在n-1的时候可能有两种状态:
1.已有m个环, 从某个元素数>1的环中加入一个元素,转移到m个环的状态,环有顺序,共有n-1个元素,所以可以插入到任意一个元素的左边,因此有n-1个种可能
2.已有m-1个环,直接把这个元素作为一个新环,转移到m个环的状态,因为只加入一个环,所以没有其他状态
根据状态1得到(n-1)*S1(n-1,m);根据状态2得到S1(n-1,m-1),合起来就是第一类斯特林数公式:S1(n,m)=(n-1)*S1(n-1,m)+S1(n-1,m-1)
第二类斯特林数的公式是:
S2(n,m)=m*S2(n-1,m)+S2(n-1,m-1)
如何推导出这些:
在n-1的时候可能有两种状态:
1.已有m个集合,因为不考虑顺序,可以插入m个集合中任意的集合,所以有m种可能
2.已有m-1个集合,直接把这个元素作为一个新集合,没有其它状态
根据状态1得到m*S1(n-1,m);根据状态2得到S1(n-1,m-1),合起来就是第二类斯特林数公式:S2(n,m)=m*S2(n-1,m)+S2(n-1,m-1)
【OI】关于斯特林数的简单理解的更多相关文章
- 如何快速求解第一类斯特林数--nlog^2n + nlogn
目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...
- 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation
目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...
- BZOJ5093图的价值(斯特林数)
题目描述 “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)
题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- CF961G Partitions(第二类斯特林数)
题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- [转]简单理解Socket
简单理解Socket 转自 http://www.cnblogs.com/dolphinX/p/3460545.html 题外话 前几天和朋友聊天,朋友问我怎么最近不写博客了,一个是因为最近在忙着公 ...
- Deep learning:四十二(Denoise Autoencoder简单理解)
前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Be ...
随机推荐
- IO之转换流举例
import java.io.*; public class TestTransForm1 { public static void main(String[] args) { try { Outpu ...
- 【tips】RESTful架构
认识RESTful在前后端分离的应用模式里,后端API接口如何定义?例如对于后端数据库中保存了商品的信息,前端可能需要对商品数据进行增删改查,那相应的每个操作后端都需要提供一个API接口: PO ...
- 91-Williams' Percent Range 威廉指标.(2015.7.4)
Williams' Percent Range 威廉指标 ~计算: %R = (HIGH(i-n)-CLOSE)/(HIGH(i-n)-LOW(i-n))×100 注解:CLOSE: 当前时段的收盘价 ...
- 早期创业,应该充分利用互联网产品和服务(从”皇包车”看一家全球中文车导服务平台如何选用ToB产品)
前段时间,在搜索"皇包车"相关的资料,于是在IT桔子网站看到了"从'皇包车'看一家全球中文车导服务平台如何选用ToB产品"这篇文章. 我是非常的震撼! ...
- 远程调试nodejs
一 windows作为远程服务器 1.在远程服务器(192.168.1.1)上安装node-inspector:npm install -g node-inspector // -g 导入安装路径 ...
- 九度oj 题目1192:回文字符串
题目1192:回文字符串 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4391 解决:2082 题目描述: 给出一个长度不超过1000的字符串,判断它是不是回文(顺读,逆读均相同)的. ...
- POJ-2594 Treasure Exploration floyd传递闭包+最小路径覆盖,nice!
Treasure Exploration Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 8130 Accepted: 3 ...
- zoj4710暴力
#include<stdio.h> #include<string.h> #define N 110 int map[N][N]; int main() { int n,m,k ...
- 一个Java开发的Python之路----------------(一)
最近开始学习Python了,主要是因为现在在给海航通过JAVA写CMDB运维管理平台,我就是作为唯一一个坐在运维屋里的开发,又当爹,又当妈,前端,后台,测试,设计,需求, 发布,统统一把抓!!在Git ...
- ubuntu14.04 配置网络
ubuntu14.04 配置网络的练习 本文参考的资料: https://blog.csdn.net/liu782726344/article/details/52912797. 感谢作者的分享! 打 ...