http://www.lydsy.com/JudgeOnline/problem.php?id=4195

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 2226  Solved: 1061
[Submit][Status][Discuss]

Description

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。

Input

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。
接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。

Output

输出文件包括t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。

Sample Input

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1

Sample Output

NO
YES

HINT

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x2=x1。这两个约束条件是等价的,可以被同时满足。
 
1≤n≤1000000
1≤i,j≤1000000000
 

Source

 离线处理,先把e==1的全部合并,然后判断e==0的是否在一个并查集里、
因为i,j较大,所以需要智慧地处理一下、
 #include <algorithm>
#include <cstdio> inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int N();
int n,fa[N];
struct Node {
int x,y,op;
bool operator < (const Node&x)const {return op>x.op;}
}a[N]; int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);} int Presist()
{
int t; read(t);
for(; t--; )
{
for(int i=; i<N; ++i) fa[i]=i; read(n);
for(int i=; i<=n; ++i)
{
read(a[i].x),read(a[i].y),read(a[i].op);
if(a[i].x>) a[i].x=a[i].x/+a[i].x%+;
if(a[i].y>) a[i].y=a[i].y/+a[i].y%+;
} std::sort(a+,a+n+);
for(int i=; i<=n; ++i)
{
if(a[i].op) fa[find(a[i].x)]=find(a[i].y);
else if(find(a[i].x)==find(a[i].y)) { printf("NO\n"); goto NO_; }
}
printf("YES\n"); NO_:;
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

BZOJ——4195: [Noi2015]程序自动分析的更多相关文章

  1. bzoj 4195: [Noi2015]程序自动分析

    4195: [Noi2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表 ...

  2. BZOJ 4195: [Noi2015]程序自动分析 并查集+离散化

    LUOGU 1955BZOJ 4195 题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量 ...

  3. 【刷题】BZOJ 4195 [Noi2015]程序自动分析

    Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,-代表程序中出现的变量,给定n个形如xi=xj或x ...

  4. BZOJ 4195: [Noi2015]程序自动分析 并查集 + 离散化 + 水题

    TM 读错题了...... 我还以为是要动态询问呢,结果是统一处理完了再询问...... 幼儿园题,不解释. Code: #include<bits/stdc++.h> #define m ...

  5. BZOJ 4195: [Noi2015]程序自动分析 [并查集 离散化 | 种类并查集WA]

    题意: 给出若干相等和不等关系,判断是否可行 woc NOI考这么傻逼的题飞快打了一个种类并查集交上了然后爆零... 发现相等和不等看错了异或一下再叫woc90分 然后发现md$a \neq b, a ...

  6. bzoj 4195: [Noi2015]程序自动分析【并查集】

    等于有传递性,所以hash一下把等于用并查集连起来,然后再判断不等于是否合法即可 #include<iostream> #include<cstdio> #include< ...

  7. BZOJ4195 [Noi2015]程序自动分析(离散化+并查集)

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 689  Solved: 296 [Submit][Sta ...

  8. BZOJ4195 NOI2015 程序自动分析

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Description 在实现程序自动分析的过程中,常常需要判定一些约束条件 ...

  9. codevs4600 [NOI2015]程序自动分析==洛谷P1955 程序自动分析

    4600 [NOI2015]程序自动分析  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 在实现 ...

随机推荐

  1. Knockout-了解Observable与computed

    KO是什么? KO不是万能的,它的出现主要是为了方便的解决下面的问题: UI元素较多,用户交互比较频繁,需要编写大量的手工代码维护UI元素的状态.样式等属性? UI元素之间关系比较紧密,比如操作一个元 ...

  2. win7系统 windows update 总是更新失败解决方法:

    win7系统 windows update 总是更新失败解决方法: 右键单击桌面“计算机”选择“管理“. 进到“计算机管理“窗口后,展开”服务和应用程序“并双击”服务“,在窗口右侧按照名称找到”Win ...

  3. Angular和SAP C4C的事件处理队列

    Angular 我们在Angular框架的代码里能看到一个名为processQueue的函数: 这个函数是通过$scope.$apply启动的: 核心代码位于一个for循环里,循环体是一个存储异步处理 ...

  4. ECharts是我接触过的最优秀的可视化工具,也是进步最快的软件,希望它早日成为世界级的开源项目。

    ECharts的广泛网址: http://echarts.baidu.com/doc/example.html 零编程玩转图表: http://tushuo.baidu.com/?qq-pf-to=p ...

  5. 数据库课程设计 PHP web实现

    纪念一下自己写的东西.. 都说很垃圾就是了 直接用XAMPP做的 菜鸟网上学的PHP和HTML <!DOCTYPE html> <html> <head> < ...

  6. 利用pyautogui自动化领取dnf的在线养竹活动的竹子

    背景: Dnf的周年庆活动之一,鬼才策划为了在线率想的活动,规律如下 1.在线1分钟可以生成1根竹子,领取竹子以后可以获取到积分,积分满足活动要求后可以领取相应档位的奖励 2.玩家不在线期间,不会生成 ...

  7. zabbix auto discovery

    1.configuration>discovery>create discovery rule ip range:192.168.43.2-254 check: http 80 2.con ...

  8. CSS中列表项list样式

    CSS列表属性 属性 描述 list-style-属性 用于把所有用于列表的属性设置于一个声明中. list-style-image 将图象设置为列表项标志. list-style-position ...

  9. 最小生成树 Prim算法 Kruskal算法实现

    最小生成树定义 最小生成树是一副连通加权无向图中一棵权值最小的生成树. 在一给定的无向图 G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即,而 w(u, v) 代表此边的 ...

  10. 如何使用GoEasy实现PHP与Websocket实时通信

    最近搞了搞websocket 做了个简答的聊天demo 1.      从GoEasy获取appkey appkey是验证用户的有效性的唯一标识. Ø  注册账号. GoEasy官网:https:// ...