题意:略。

析:由于 n 比较小,所以我们可以用Floyd,完全不会超时。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e2 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int a[maxn];
int dp[maxn][maxn]; int main(){
while(scanf("%d %d", &n, &m) == 2){
if(!m && !n) break;
int x, y, c;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j) dp[i][j] = 100000;
for(int i = 0; i < m; ++i){
scanf("%d %d %d", &x, &y, &c);
dp[x][y] = dp[y][x] = c;
}
for(int k = 1; k <= n; ++k){
for(int i = 1; i <= n; ++i){
for(int j = 1; j <= n; ++j){
dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j]);
}
}
}
printf("%d\n", dp[1][n]);
}
return 0;
}

HDU 2544 最短路 (Floyd)的更多相关文章

  1. UESTC 30 &&HDU 2544最短路【Floyd求解裸题】

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. ACM: HDU 2544 最短路-Dijkstra算法

    HDU 2544最短路 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descrip ...

  3. HDU - 2544最短路 (dijkstra算法)

    HDU - 2544最短路 Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以 ...

  4. hdu 2544 最短路

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2544 最短路 Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shi ...

  5. (重刷)HDU 1874 畅通工程续 + HDU 2544 最短路 最短路水题,dijkstra解法。

    floyd解法 今天初看dijkstra,先拿这两题练手,其他变形题还是不是很懂. 模版题,纯练打字... HDU 1874: #include <cstdio> #define MAXN ...

  6. HDU 2544最短路 (迪杰斯特拉算法)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2544 最短路 Time Limit: 5000/1000 MS (Java/Others)    Me ...

  7. HDU 2544 最短路(floyd+bellman-ford+spfa+dijkstra队列优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目大意:找点1到点n的最短路(无向图) 练一下最短路... dijkstra+队列优化: #i ...

  8. hdu 2544 最短路 (dijkstra,floyd)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目大意:找到两点间最短的距离值. 代码一:(dijkstra算法) #include < ...

  9. HDU 2544 最短路(模板题——Floyd算法)

    题目: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你 ...

随机推荐

  1. 集训第五周动态规划 D题 LCS

    Description In a few months the European Currency Union will become a reality. However, to join the ...

  2. lua报错,看到报错信息有tail call,以为和尾调用有关,于是查了一下相关知识

    尾调用是指在函数return时直接将被调函数的返回值作为调用函数的返回值返回,尾调用在很多语言中都可以被编译器优化, 基本都是直接复用旧的执行栈, 不用再创建新的栈帧, 原理上其实也很简单, 因为尾调 ...

  3. POJ-3692Kindergarten,求最大独立集!

    Kindergarten Time Limit: 2000MS   Memory Limit: 65536K       Description In a kindergarten, there ar ...

  4. 2015 湘潭大学程序设计比赛(Internet)部分题解,其中有一个题与NYOJ1057很像,贪心过~~

    仙剑奇侠传                 祝玩的开心                                                                          ...

  5. [luoguP1439] 排列LCS问题(DP + 树状数组)

    传送门 无重复元素的LCS问题 n2 做法不说了. nlogn 做法 —— 因为LCS问题求的是公共子序列,顺序不影响答案,影响答案的只是两个串的元素是否相同,所以可以交换元素位置. 首先简化一下问题 ...

  6. 【NOIP2017练习】函数变换(DP,dfs)

    题意: 思路: 极限步数大概不会超过30 ; ..max,..]of longint; eul:..max]of longint; cas,v,n,k,i,ans,j:longint; functio ...

  7. codeforces 691F(组合数计算)

    Couple Cover, a wildly popular luck-based game, is about to begin! Two players must work together to ...

  8. Redis集群方案之Twemproxy+HAProxy+Keepalived+Sentinel+主从复制(待实践)

    首先说明一下,Twemproxy+HAProxy+Keepalived+Sentinel+主从复制-这里提到的技术不一定全部都用上,但是全部用上之后可以达到高可用. 主从复制:实现数据一式多份的保障. ...

  9. linux 硬件中断调节

    什么是中断 中断interrupts是指硬件主动的来告诉CPU去做某些事情.比如网卡收到数据后可能主动的告诉CPU来处理自己接受到的数据,键盘有了按键输入后会主动告知CPU来读取输入. 硬件主动的打扰 ...

  10. centos下性能分析工具perf的安装和简单使用

    1.安装: cat /etc/redhat-releaseCentOS release 6.6 (Final) sudo yum install perf 2.