leetcode_894. All Possible Full Binary Trees
https://leetcode.com/problems/all-possible-full-binary-trees/
给定节点个数,求所有可能二叉树,该二叉树所有节点要么有0个子节点要么有两个子节点。返回所有二叉树的头指针。
一开始一直想的是从根节点开始建树,一直想不出来方法。后来想到可以从子节点开始建树,问题就很好解决了。
class Solution
{
public:
vector<TreeNode*> allPossibleFBT(int N)
{
vector<TreeNode*> ret;
if(N == )
{
TreeNode* rt = new TreeNode();
ret.push_back(rt);
return ret;
}
for(int i=; i<=(N-)/; i+=) //左子树的节点数
{
vector<TreeNode*> left = allPossibleFBT(i); //创建所有可能左子树
vector<TreeNode*> right = allPossibleFBT(N--i); //创建所有可能的右子树
for(int j=;j<left.size();j++) //遍历所有左子树
for(int k=;k<right.size();k++) //遍历所有右子树
{
TreeNode * rt = new TreeNode(); //创建根节点
rt->left = left[j];
rt->right = right[k];
ret.push_back(rt);
if(i != N--i) //如果左右子树节点数不同,交换左右子树也是一种可能
{
TreeNode * rt2 = new TreeNode();
rt2->left = right[k];
rt2->right = left[j];
ret.push_back(rt2);
}
}
}
return ret;
}
};
leetcode_894. All Possible Full Binary Trees的更多相关文章
- hdu3240 Counting Binary Trees
Counting Binary Trees Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- Binary Trees
1. Definiation What is Binary Trees? Collection of node (n>=0) and in which no node can have more ...
- [leetcode-617-Merge Two Binary Trees]
Given two binary trees and imagine that when you put one of them to cover the other, some nodes of t ...
- Merge Two Binary Trees
Given two binary trees and imagine that when you put one of them to cover the other, some nodes of t ...
- [LeetCode] Merge Two Binary Trees 合并二叉树
Given two binary trees and imagine that when you put one of them to cover the other, some nodes of t ...
- [Swift]LeetCode617. 合并二叉树 | Merge Two Binary Trees
Given two binary trees and imagine that when you put one of them to cover the other, some nodes of t ...
- [Swift]LeetCode823. 带因子的二叉树 | Binary Trees With Factors
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree us ...
- [Swift]LeetCode894. 所有可能的满二叉树 | All Possible Full Binary Trees
A full binary tree is a binary tree where each node has exactly 0 or 2 children. Return a list of al ...
- [Swift]LeetCode951. 翻转等价二叉树 | Flip Equivalent Binary Trees
For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left a ...
随机推荐
- 编译Android VNC Server【转】
本文转载自:http://www.cnblogs.com/fengfeng/p/3289292.html 1,在如下地址checkout源代码,我checkout的版本为0.9.7http://cod ...
- Recovery启动流程(1)--- 应用层到开机进入recovery详解
转载请注明来源:cuixiaolei的技术博客 进入recovery有两种方式,一种是通过组合键进入recovery,另一种是上层应用设置中执行安装/重置/清除缓存等操作进行recovery.这篇文档 ...
- 2 socket相关概念
嘿嘿 这只是学习过程中的笔记积累,百度也是一代吧,大神就勿喷勒..... 1 为什么把网络编程接口叫做套接字 socket字面意思为插座 插孔,让人联想到电话,这种简单的设备给人类太大的方便 2 根据 ...
- bzoj 1180: [CROATIAN2009]OTOCI【LCT】
一道几乎是板子的LCT,但是沉迷数学很久时候突然1A了这道题还是挺开心的 #include<iostream> #include<cstdio> using namespace ...
- 牛客网NOIP赛前集训营-提高组(第八场)
染色 链接:https://ac.nowcoder.com/acm/contest/176/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10 ...
- P5071 [Ynoi2015]此时此刻的光辉
传送门 lxl大毒瘤 首先一个数的因子个数就是这个数的每个质因子的次数+1的积,然后考虑把每个数分解质因子,用莫队维护,然后我交上去就0分了 如果是上面那样的话,我们每一次移动指针的时间复杂度是O(这 ...
- [App Store Connect帮助]七、在 App Store 上发行(3.2)提交至“App 审核”:查看 App 状态历史记录
您可以查看您 App 的某一版本的 App 状态历史记录.在历史记录表中的每一行都包含 App 状态.App 状态更改时间,以及更改的发起人.使用此信息追踪“App 审核”流程中的 App. 若想在 ...
- Ubuntu 18.04 关闭蓝牙开机启动
sudo gedit /etc/rc.local 然后,加入下面一行 rfkill block bluetooth
- linux 重名名、删除文件操作
linux下重命名文件或文件夹的命令mv既可以重命名,又可以移动文件或文件夹. 例子:将目录A重命名为B mv A B 例子:将/a目录移动到/b下,并重命名为c mv /a /b/c 删除文件夹 r ...
- Kubernetes集群认证
1.集群搭建:https://www.kubernetes.org.cn/3808.html 2.集群验证:https://www.kubernetes.org.cn/1861.html