%% Perceptron Regression
close all
clear %%load data
x = load('ex4x.dat');
y = load('ex4y.dat'); x=ones(,);
for i=:
x(i,)=mod(i,);
x(i,)=floor(i/);
end for i=:
if (x(i,)+x(i,))<
y(i)=;
else
y(i)=;
end
end [m, n] = size(x); % Add intercept term to x
x = [ones(m, ), x]; %%draw picture
% find returns the indices of the
% rows meeting the specified condition
pos = find(y == );
neg = find(y == );
% Assume the features are in the 2nd and 3rd
% columns of x
figure('NumberTitle', 'off', 'Name', '感知机');
plot(x(pos, ), x(pos,), '+');
hold on;
plot(x(neg, ), x(neg, ), 'o'); %进行初始化
s = ; % 标识符,当s=0时,表示迭代终止
n = ; % 表示迭代的次数
N = ; %定义N为最大分类判别次数,判别次数超过此值则认定样本无法分类。
w= [,,]'; % 取权向量初始值 % 开始迭代
while s
J = ; % 假设初始的分类全部正确
for i = :size(pos)
if (x(pos(i),:)*w)<= % 查看x1分类是否错误,在x属于w1却被错误分类的情况下,w'x<0
w = w+x(pos(i),:)';% 分类错误,对权向量进行修正
J = ; % 置错误标志位为1
end
end
for i = :size(neg)
if (x(neg(i),:)*w)>= % 查看x2分类是否错误,在x属于w2却被错误分类的情况下,w'x>0
w = w-x(neg(i),:)';% 分类错误,对权向量进行修正
J = ; % 置错误标志位为1
end
end
if J== % 代价为0,即分类均正确
s = ; % 终止迭代
end
n = n+; % 迭代次数加1
if n == N
s=;
end
end w=[;w()/w();w()/w()]; %%Calculate the decision boundary line
plot_x = [min(x(:,)), max(x(:,))];
plot_y = (-./w()).*(w().*plot_x +w());
plot(plot_x, plot_y)
legend('Admitted', 'Not admitted', 'Decision Boundary')
hold off

perceptron and ANN的更多相关文章

  1. 从下往上看--新皮层资料的读后感 第四部分 来自神经元的设计-perceptron 感知机

    搬地方了,其他的部分看知乎:https://zhuanlan.zhihu.com/p/22114481 直到50年代,perceptron被Frank Rosenblatt搞了出来.perceptro ...

  2. 【转】漫谈ANN(2):BP神经网络

    上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能.由这些人工神经元构建出来的网络,才能够具有学习.联想.记忆和模式识别的能力.BP网络就是一种简单的人工神经 ...

  3. OpenCV——ANN神经网络

    ANN-- Artificial Neural Networks 人工神经网络 //定义人工神经网络 CvANN_MLP bp; // Set up BPNetwork's parameters Cv ...

  4. 目前所有的ANN神经网络算法大全

    http://blog.sina.com.cn/s/blog_98238f850102w7ik.html 目前所有的ANN神经网络算法大全 (2016-01-20 10:34:17) 转载▼ 标签: ...

  5. 【机器学习】人工神经网络ANN

    神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用.人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发.硬件计算能力暴增.深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以 ...

  6. Spark Multilayer perceptron classifier (MLPC)多层感知器分类器

    多层感知器分类器(MLPC)是基于前馈人工神经网络(ANN)的分类器. MLPC由多个节点层组成. 每个层完全连接到网络中的下一层. 输入层中的节点表示输入数据. 所有其他节点,通过输入与节点的权重w ...

  7. Python_sklearn机器学习库学习笔记(七)the perceptron(感知器)

    一.感知器 感知器是Frank Rosenblatt在1957年就职于Cornell航空实验室时发明的,其灵感来自于对人脑的仿真,大脑是处理信息的神经元(neurons)细胞和链接神经元细胞进行信息传 ...

  8. ANN神经网络——实现异或XOR (Python实现)

    一.Introduction Perceptron can represent AND,OR,NOT 用初中的线性规划问题理解 异或的里程碑意义 想学的通透,先学历史! 据说在人工神经网络(artif ...

  9. ann

    转自 http://blog.csdn.net/yiluoyan/article/details/45308785 这篇文章接着之前的车牌识别,从输入的车图片中分割识别出车牌之后,将进行下一步:车牌号 ...

随机推荐

  1. android 播放MP3

    <?xml version="1.0" encoding="utf-8"?> <!-- 定义当前布局的基本LinearLayout --> ...

  2. Activiti Model Editor组件

    通过Activiti Modeler架构图可知,Activiti Explorer采用的是Vaadin框架. Vaadin 是一种 Java Web 应用程序的开发框架, 其设计目标是便利地创建和维护 ...

  3. win7系统使用engine进行开发报错,“未能加载文件或程序集”

    http://www.gisall.com/wordpress/?p=7161 使用vs2010加 arcengine 开发winfrom应用,新建了uc,拖了几个控件后,编译,报未能加载文件或程序集 ...

  4. fabricJs使用系列(一)

    Get the canvas object while using fabric js I'm using Fabric.js and I've created a fabric canvas obj ...

  5. HDU 4857 topological_sort

    逃生 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  6. hdu 1679 The Unique MST (克鲁斯卡尔)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24152   Accepted: 8587 D ...

  7. stl之multiset容器的应用

    与set集合容器一样,multiset多重集合容器也使用红黑树组织元素数据,仅仅是multiset容器同意将反复的元素健值插入.而set容器则不同意. set容器所使用的C++标准头文件set.事实上 ...

  8. EasyDarwin开源手机直播方案:EasyPusher手机直播推送,EasyDarwin流媒体server,EasyPlayer手机播放器

    在不断进行EasyDarwin开源流媒体server的功能和性能完好的同一时候,我们也配套实现了眼下在安防和移动互联网行业比較火热的移动端手机直播方案,主要就是我们的 EasyPusher直播推送项目 ...

  9. linux系列之-—03 压缩和解压缩命令

    tar命令 解包:tar zxvf FileName.tar 打包:tar czvf FileName.tar DirName gz命令 解压1:gunzip FileName.gz 解压2:gzip ...

  10. Distributed Management Task Force----分布式管理任务组

    http://baike.baidu.com/link?url=Y9HGLs8Qj6pXbbgY6xPdfiGDsQO8Eu1e80B4giQtQ_hAfGNF59byxnLoERYri4Duw7Gw ...