解题思路

既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解。大家都知道斐波那契的初始矩阵如下

$$\begin{bmatrix}1&1\\1&0\end{bmatrix}$$

那么这道题我们怎么推矩阵呢?先确定目标矩阵如下

$$\begin{bmatrix} F_n & F_{n-1}\end{bmatrix}$$

然后推导过程如下:

$$F_n = p\times F_{n-1} + q\times F_{n-2}
\\ \begin{bmatrix}F_{n-1}&F_{n-2}\end{bmatrix}\times \begin{bmatrix} p&1\\q&0 \end{bmatrix}=\begin{bmatrix}(p\times F_{n-1}+q\times F_{n-2})&F_{n-1}\times 0\end{bmatrix}=\begin{bmatrix} F_n & F_{n-1}\end{bmatrix}$$

附上代码

#include <iostream>
#include <cstring>
#include <cstdio> using namespace std; typedef long long LL;
LL n, Mod, p, q, a1, a2, ans;
struct mat{
LL m[4][4];
}Ans, base;
inline void init() {
Ans.m[1][1] = a2, Ans.m[1][2] = a1;
base.m[1][1] = p, base.m[2][1] = q, base.m[1][2] = 1;
}
inline mat mul(mat a, mat b) {
mat res;
memset(res.m, 0, sizeof(res.m));
for(int i=1; i<=2; i++) {
for(int j=1; j<=2; j++) {
for(int k=1; k<=2; k++) {
res.m[i][j] += (a.m[i][k] % Mod) * (b.m[k][j] % Mod);
res.m[i][j] %= Mod;
}
}
}
return res;
}
inline void Qmat_pow(int p) {
while (p) {
if(p & 1) Ans = mul(Ans, base);
base = mul(base, base);
p >>= 1;
}
} int main() {
scanf("%lld%lld%lld%lld%lld%lld", &p, &q, &a1, &a2, &n, &Mod);
if(n == 1) {
cout<<a1;
return 0;
}
if(n == 2) {
cout<<a2;
return 0;
}
init();
Qmat_pow(n-2);
ans = Ans.m[1][1];
ans %= Mod;
printf("%lld", ans);
}

  

Luogu P1349 广义斐波那契数列的更多相关文章

  1. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  2. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  3. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  4. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  5. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

  6. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  7. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  8. P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  9. 洛谷P1349 广义斐波那契数列

    传送门 话说谁能告诉我矩阵怎么用latex表示…… 差不多就这样 //minamoto #include<iostream> #include<cstdio> #include ...

随机推荐

  1. 说说循环与闭包——《你不知道的JS》读书笔记(一)

    什么是闭包 <你不知道的JS>里有对闭包的定义:"当函数可以记住并访问所在的词法作用域,即使函数是在当前作用域之外执行,这就产生了闭包." 讲闭包是啥的太多了...就一 ...

  2. Android 通过USB查看kernel调试信息【转】

    本文转载自:http://blog.csdn.net/lindonghai/article/details/51683644 前提:电脑已安装adb并可正常使用. 在调试Android驱动时,需要查看 ...

  3. bzoj5311: 贞鱼

    还是年轻啊算的时候少乘一个4000被卡二分上界了...%%%%bright教我超级快速读D飞bzoj垃圾卡常数据 我们容易写出这样的DP方程:f[i][j]=f[k][j-1]+val(k+1,j) ...

  4. luence全文检索(简介)

    刚开始做全文检索也是找了很多资料但是网上的都不是很齐全luence是个很不多的工具 Lucene4.0的官网文档:http://lucene.apache.org/core/4_0_0/core/ov ...

  5. 在MAC端查看win7

    在MAC端查看win7,在finder中打开网络,输入win7地址,填入用户名和密码,就可以了

  6. 【BZOJ 3211&3038】 花神游历各国 & 上帝造题的七分钟2

    [题目链接] [BZOJ 3211] 点击打开链接 [BZOJ 3038] 点击打开链接 [算法] 线段树 开根操作直接开到叶子节点,注意当区间中所有数都是0或1时,不需要开根 [代码] #inclu ...

  7. 51Nod 1443 路径和树 —— dijkstra

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1443 首先要得到一个最短路树: 注意边权和最小,因为在最短路中,每 ...

  8. 洛谷 P2881 [USACO07MAR]排名的牛Ranking the Cows

    题应该是假的...先不做了 https://www.cnblogs.com/Blue233333/p/7249057.html 比如输入5 0,答案是10,但可以比较8次就出来.就是在一个已知有序数列 ...

  9. 块级标签与预格式化文本标签----------大多数XHTML可以表示为两种类型的标签:块标签(block tag)和内联标签(inline tag)

    <html> <head> <meta charset="utf-8"> <title>块级标签</title> < ...

  10. 转】 Kafka文件存储机制那些事

    原博文出自于:http://tech.meituan.com/kafka-fs-design-theory.html    感谢! Kafka是什么 Kafka是最初由Linkedin公司开发,是一个 ...