[SDOI2013]泉
题目描述
作为光荣的济南泉历史研究小组中的一员,铭铭收集了历史上x个不同年份时不同泉区的水流指数,这个指数是一个小于. 2^30的非负整数。第i个年份时六个泉区的泉水流量指数分别为 A(i,l),A(i,2),Mi,3),A(i,4), A(i,5)与 A(i,6)。
现在铭铭希望知道有多少对不同的年份:i和j,满足这两年恰好有K个泉区的泉水流S指数对应相同。
输入输出格式
输入格式:
第一行有2个整数,分别是N和K
之后N行,每行有6个整数。第i行的第j个数字A(i,j)表示第i个年份屮第j个泉区的泉水流量指数。
输出格式:
一个整数表示有多少对不同的年份满足恰有K个区的泉水流量指数对应相同。
输入输出样例
输入样例#1: 复制
3 3
1 2 3 4 5 6
1 2 3 0 0 0
0 0 0 4 5 6
输出样例#1: 复制
2
说明
对于 100%的数据, 0<=K <=6, 且所有数据中K是等概率出现的, 即对于任意的 0<=x都有大约 1/7 的数据中 K=x. N<=100000
题解
这题卡哈希好蛋疼
观察题目发现k很小,所以可以枚举所有情况
用哈希表存储每种哈希值出现的次数
然后因为是恰好k个泉区
所以我们要容斥掉所有的>k个泉区的方案数
答案就是至少k个泉区的方案数 - 至少是k+1个泉区的方案数 * \(C(k + 1 , k)\) + 至少是k+2个泉区的方案数 * \(C(k+2,k)\)
为什么要去乘组合数呢?
因为每个至少是\(k+a(a>0)\)个泉区相同的方案对至少是k个泉区相同的方案数的贡献是\(C(k+a,k)\)
而我们要求的是恰好,所以要将他们减去
代码
#include<cstdio>
#include<cstring>
#include<cstring>
#include<iostream>
#include<algorithm>
# define LL long long
# define ull unsigned long long
const ull Base = 233333 ;
const ull mod = 999983 ;
const int M = 100005 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
int n , m ;
int val[M][8] ;
int c[8][8] ;
LL Ans ;
int hea[M * 10] , num ;
struct E {
int Nxt , cnt ; ull to ;
} edge[M * 10] ;
inline int chk(int x) {
int ret = 0 ;
for(int i = 1 ; i <= 6 ; i ++)
if(x & (1 << (i - 1)))
++ret ;
return ret ;
}
inline void insert(ull x) {
int u = x % mod ;
for(int i = hea[u] ; i ; i = edge[i].Nxt) {
ull v = edge[i].to ;
if(v == x) { edge[i].cnt ++ ; return ; }
}
edge[++num].Nxt = hea[u] ; edge[num].to = x ; edge[num].cnt = 1 ; hea[u] = num ;
}
inline void Solve(int x) {
int ret = 0 ;
LL temp = 0 ;
for(int i = 1 ; i <= n ; i ++) {
ull h = 0 ;
for(int j = 1 ; j <= 6 ; j ++)
if(x & (1 << (j - 1)))
h = h * Base + val[i][j] ;
insert(h) ;
}
for(int i = 1 ; i <= 6 ; i ++) if(x & (1 << (i - 1))) ++ret ;
for(int i = 1 ; i <= num ; i ++) temp += 1LL * ((edge[i].cnt - 1) * edge[i].cnt) / 2 ;
temp *= c[ret][m] ;
memset(hea , 0 , sizeof(hea)) ; num = 0 ;
if((ret - m) % 2) Ans -= temp ;
else Ans += temp ;
}
int main() {
n = read() ; m = read() ;
for(int i = 1 ; i <= n ; i ++)
for(int j = 1 ; j <= 6 ; j ++)
val[i][j] = read() ;
c[0][0] = 1 ;
for(int i = 1 ; i <= 6 ; i ++) {
c[i][0] = 1 ;
for(int j = 1 ; j <= i ; j ++)
c[i][j] = c[i - 1][j] + c[i - 1][j - 1] ;
}
for(int i = 0 ; i < (1 << 6) ; i ++)
if(chk(i) >= m)
Solve(i) ;
cout << Ans << endl ;
return 0 ;
}
[SDOI2013]泉的更多相关文章
- [SDOI2013]泉(容斥)
/* 容斥加上哈希 首先我们可以2 ^ 6枚举相同情况, 然后对于这些确定的位置哈希一下统计方案数 这样我们就统计出了这些不同方案的情况, 然后容斥一下就好了 */ #include<cstdi ...
- 【[SDOI2013]泉】
\(hash\)+容斥 但是看到这个令人愉快的数据范围还是直接枚举子集吧 首先我们发现\(6\)这个东西简直是小的可怜,复杂度里肯定有\(2^6\)的 于是我们可以直接先枚举子集,把所有状态的对应相等 ...
- 题解 洛谷 P3298 【[SDOI2013]泉】
考虑到年份数很小,只有 \(6\),所以可以 \(2^6\) 来枚举子集,确定流量指数对应相同的位置,然后通过哈希和排序来计算相同的方案数. 但是这样计算出的是大于等于子集元素个数的方案数,所以还需要 ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- NOIP前的刷题记录
因为这几天要加油,懒得每篇都来写题解了,就这里记录一下加上一句话题解好了 P4071 [SDOI2016]排列计数 组合数+错排 loj 6217 扑克牌 暴力背包 P2511 [HAOI2008 ...
- 【JZOJ3295】【SDOI2013】泉(spring)
╰( ̄▽ ̄)╭ 济南市"泉历史研究小组"依据济南特有的泉脉关系将济南的泉水分为六个区域,分别是市中区.历下区.天桥区.槐荫区.历城区.长清区. 作为光荣的济南泉历史研究小组中的一员 ...
- BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]
3130: [Sdoi2013]费用流 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 960 Solved: 5 ...
- Centos 下安装 文泉驿 字体 Odoo
刚装完centos下的odoo的字体 文泉驿 ,一万头草泥马呼啸而过.....劝君如非必要,千万别再centos下折腾odoo..... 正题,文泉驿官网 只提供 deb包和源码包的字体安装 ,想在c ...
- freebsd|odoo - 为odoo报表 安装文泉译中文字体
来源: Odoo8.0中使用文泉译中文字体 http://blog.csdn.net/vnsoft/article/details/40056935 FreeBSD wkhtmltop ...
随机推荐
- 使用JavaMail通过QQ/126服务器服务发送邮件
https://blog.csdn.net/yidragon88xx/article/details/53230310
- hdu4696 Answers(循环节+找规律)
题意: 分析: 容易想到先把T数组按位置和对应权值建一个有向图(类似置换群那种指法) 然后图建完了,如果C[]里面都是2,那显然只能凑出那些偶数,奇数是不能凑出来的 如果C[]有1有2呢? 事实上是可 ...
- Linux下查看硬盘UUID和修改硬盘UUID(转)
查看硬盘UUID: 1. ls -l /dev/disk/by-uuid 2. blkid /dev/sda5 修改硬盘UUID: 1.新建和改变分区的UUID sudo uuidgen | xarg ...
- JAVA调用动态链接库(dll)
菜鸡爬坑 基础知识 因为某个东西的keygen我只会在win下生成!! 所以只能出此下策!!之前一直是android下用jni调用so文件,现在试下java在win平台下调用dll 首先还是 ...
- Android 实现形态各异的双向側滑菜单 自己定义控件来袭
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/39670935.本文出自:[张鸿洋的博客] 1.概述 关于自己定义控件側滑已经写了 ...
- PHP在浏览器上跟踪调试的方法以及使用ChromePhp、FirePHP的简介
之前用ThinkPHP时发现有个 trace 函数能够跟踪调试,感觉非常有意思.网上搜索了下类似的东西.发现了 ChromePhp ,曾经没想过这样来调试 PHP 程序.感觉非常方便,非常实用. Th ...
- vim note(5)
.vimrc 的设置 $HOME/.vimrc 的普通设置,例如以下. set nocompatible "" not compatible with VI "" ...
- 开拓新途径找出新方法,上海SEO公司分享3个操作看看是否可行
开拓新途径找出新方法,上海SEO公司分享3个操作看看是否可行 内容收录,外链公布,流量点击.用户体验.这是SEO优化的几个核心和重点.也是SEO站长每天都在绞尽脑汁进行操作的SEO重心,影响着非常多人 ...
- iOS 保存视频AVAssetWriter
错误的CMTime导致保存的视频无效,比如: frameTime CMTime 1122 600ths of a second value CMTimeValue 1122timescale CMTi ...
- 【bzoj1798】[Ahoi2009]Seq 维护序列seq
大意:一个数组,三个操作,第一种是区间[a,b]每个数乘乘,第二种是区间[a,b]每个数加c,第三种是查询[a,b]区间的和并对p取摸. 两种操作就不能简单的只往下传标记.每次传乘法标记时,要把加法标 ...