题目描述

作为光荣的济南泉历史研究小组中的一员,铭铭收集了历史上x个不同年份时不同泉区的水流指数,这个指数是一个小于. 2^30的非负整数。第i个年份时六个泉区的泉水流量指数分别为 A(i,l),A(i,2),Mi,3),A(i,4), A(i,5)与 A(i,6)。

现在铭铭希望知道有多少对不同的年份:i和j,满足这两年恰好有K个泉区的泉水流S指数对应相同。

输入输出格式

输入格式:

第一行有2个整数,分别是N和K

之后N行,每行有6个整数。第i行的第j个数字A(i,j)表示第i个年份屮第j个泉区的泉水流量指数。

输出格式:

一个整数表示有多少对不同的年份满足恰有K个区的泉水流量指数对应相同。

输入输出样例

输入样例#1: 复制

3 3

1 2 3 4 5 6

1 2 3 0 0 0

0 0 0 4 5 6

输出样例#1: 复制

2

说明

对于 100%的数据, 0<=K <=6, 且所有数据中K是等概率出现的, 即对于任意的 0<=x都有大约 1/7 的数据中 K=x. N<=100000


题解

这题卡哈希好蛋疼

观察题目发现k很小,所以可以枚举所有情况

用哈希表存储每种哈希值出现的次数

然后因为是恰好k个泉区

所以我们要容斥掉所有的>k个泉区的方案数

答案就是至少k个泉区的方案数 - 至少是k+1个泉区的方案数 * \(C(k + 1 , k)\) + 至少是k+2个泉区的方案数 * \(C(k+2,k)\)

为什么要去乘组合数呢?

因为每个至少是\(k+a(a>0)\)个泉区相同的方案对至少是k个泉区相同的方案数的贡献是\(C(k+a,k)\)

而我们要求的是恰好,所以要将他们减去

代码

#include<cstdio>
#include<cstring>
#include<cstring>
#include<iostream>
#include<algorithm>
# define LL long long
# define ull unsigned long long
const ull Base = 233333 ;
const ull mod = 999983 ;
const int M = 100005 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
} int n , m ;
int val[M][8] ;
int c[8][8] ;
LL Ans ;
int hea[M * 10] , num ;
struct E {
int Nxt , cnt ; ull to ;
} edge[M * 10] ;
inline int chk(int x) {
int ret = 0 ;
for(int i = 1 ; i <= 6 ; i ++)
if(x & (1 << (i - 1)))
++ret ;
return ret ;
}
inline void insert(ull x) {
int u = x % mod ;
for(int i = hea[u] ; i ; i = edge[i].Nxt) {
ull v = edge[i].to ;
if(v == x) { edge[i].cnt ++ ; return ; }
}
edge[++num].Nxt = hea[u] ; edge[num].to = x ; edge[num].cnt = 1 ; hea[u] = num ;
}
inline void Solve(int x) {
int ret = 0 ;
LL temp = 0 ;
for(int i = 1 ; i <= n ; i ++) {
ull h = 0 ;
for(int j = 1 ; j <= 6 ; j ++)
if(x & (1 << (j - 1)))
h = h * Base + val[i][j] ;
insert(h) ;
}
for(int i = 1 ; i <= 6 ; i ++) if(x & (1 << (i - 1))) ++ret ;
for(int i = 1 ; i <= num ; i ++) temp += 1LL * ((edge[i].cnt - 1) * edge[i].cnt) / 2 ;
temp *= c[ret][m] ;
memset(hea , 0 , sizeof(hea)) ; num = 0 ;
if((ret - m) % 2) Ans -= temp ;
else Ans += temp ;
}
int main() {
n = read() ; m = read() ;
for(int i = 1 ; i <= n ; i ++)
for(int j = 1 ; j <= 6 ; j ++)
val[i][j] = read() ;
c[0][0] = 1 ;
for(int i = 1 ; i <= 6 ; i ++) {
c[i][0] = 1 ;
for(int j = 1 ; j <= i ; j ++)
c[i][j] = c[i - 1][j] + c[i - 1][j - 1] ;
}
for(int i = 0 ; i < (1 << 6) ; i ++)
if(chk(i) >= m)
Solve(i) ;
cout << Ans << endl ;
return 0 ;
}

[SDOI2013]泉的更多相关文章

  1. [SDOI2013]泉(容斥)

    /* 容斥加上哈希 首先我们可以2 ^ 6枚举相同情况, 然后对于这些确定的位置哈希一下统计方案数 这样我们就统计出了这些不同方案的情况, 然后容斥一下就好了 */ #include<cstdi ...

  2. 【[SDOI2013]泉】

    \(hash\)+容斥 但是看到这个令人愉快的数据范围还是直接枚举子集吧 首先我们发现\(6\)这个东西简直是小的可怜,复杂度里肯定有\(2^6\)的 于是我们可以直接先枚举子集,把所有状态的对应相等 ...

  3. 题解 洛谷 P3298 【[SDOI2013]泉】

    考虑到年份数很小,只有 \(6\),所以可以 \(2^6\) 来枚举子集,确定流量指数对应相同的位置,然后通过哈希和排序来计算相同的方案数. 但是这样计算出的是大于等于子集元素个数的方案数,所以还需要 ...

  4. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  5. NOIP前的刷题记录

    因为这几天要加油,懒得每篇都来写题解了,就这里记录一下加上一句话题解好了 P4071 [SDOI2016]排列计数   组合数+错排 loj 6217 扑克牌 暴力背包 P2511 [HAOI2008 ...

  6. 【JZOJ3295】【SDOI2013】泉(spring)

    ╰( ̄▽ ̄)╭ 济南市"泉历史研究小组"依据济南特有的泉脉关系将济南的泉水分为六个区域,分别是市中区.历下区.天桥区.槐荫区.历城区.长清区. 作为光荣的济南泉历史研究小组中的一员 ...

  7. BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]

    3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 960  Solved: 5 ...

  8. Centos 下安装 文泉驿 字体 Odoo

    刚装完centos下的odoo的字体 文泉驿 ,一万头草泥马呼啸而过.....劝君如非必要,千万别再centos下折腾odoo..... 正题,文泉驿官网 只提供 deb包和源码包的字体安装 ,想在c ...

  9. freebsd|odoo - 为odoo报表 安装文泉译中文字体

    来源: Odoo8.0中使用文泉译中文字体         http://blog.csdn.net/vnsoft/article/details/40056935 FreeBSD wkhtmltop ...

随机推荐

  1. 【SGU194&ZOJ2314】Reactor Cooling(有上下界的网络流)

    题意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质. 并且满足每根pipe一定的流 ...

  2. 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)

    题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...

  3. idea使用之maven中央仓库索引更新

    接着上篇,上篇是更新本地已有的索引,这样在编写pom文件的时候,可以自动提示,但如果我们能够把整个中央仓库的索引更新下来,那不是更方便啦. 打开settings-->Build,Executio ...

  4. [bzoj5314][Jsoi2018]潜入行动_树形背包dp

    潜入行动 bzoj-5314 Jsoi-2018 题目大意:题目链接. 注释:略. 想法: 学长给我们除了一套考试题,三个学长一人一道这是T1. 好吧好吧,傻逼背包...... 复杂度$O(nk)$. ...

  5. 权限框架之Shiro详解(非原创)

    文章大纲 一.权限框架介绍二.Shiro基础介绍三.Spring Boot整合Shiro代码实战四.项目源码与资料下载五.参考文章   一.权限框架介绍 1. 什么是权限管理   权限管理属于系统安全 ...

  6. symfony 使用原始sql

    $this->get('database_connection')->fetchAll('select * from book where book.id=3')

  7. C#中Stack&lt;T&gt;类的使用及部分成员函数的源代码分析

    Stack<T>类 Stack<T> 作为数组来实现. Stack<T> 的容量是 Stack<T> 能够包括的元素数. 当向 Stack<T&g ...

  8. hdu 2544 最短路(SPFA算法)

    本题链接:点击打开链接 本题大意: 首先输入一个n,m.代表有n个点.m条边.然后输入m条边,每条边输入两个点及边权.1为起点,n为终点.输入两个零表示结束. 解题思路: 本题能够使用SPFA算法来做 ...

  9. VC++ 提示无法打开包括文件“iostream.h”怎么办

    把 //#include "iostream.h" 改成 #include<iostream> using namespace std;                 ...

  10. 通过构建Cocoapods私有库进行组件化开发探索

    专题一 一.创建私有索引库 选Github或者码云都可以,本例以Github为例.创建私有索引库用来作为自己组件库的索引: 二.本地添加私有索引库 添加:pod repo add 索引库名称 索引库地 ...