HDU2489 Minimal Ratio Tree 【DFS】+【最小生成树Prim】
Minimal Ratio Tree
Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.
end the input. The next line contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course,
the diagonal will be all 0, since there is no edge connecting a node with itself.
All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].
The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree.
number; if there's a tie, look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .
3 2
30 20 10
0 6 2
6 0 3
2 3 0
2 2
1 1
0 2
2 0
0 0
1 3
1 2
⊙﹏⊙‖∣在推断两浮点数大小时应该这样比較:a-b<-(1e-8);我由于不知道这个WA了6次。
题意:求一个稍微变形的“最小生成树”,其值为边权和除以点权和。
题解:用深搜在n个点里选出m个点。再求这m个点的“最小生成树”就可以。
#include <stdio.h>
#include <string.h>
#include <limits.h>
#define maxn 16 int map[maxn][maxn], node[maxn];
int n, m, store[maxn], vis[maxn];
double ans;
bool visted[maxn]; //hash to vis array double prim()
{
int i, j, u, count = 0, tmp, vnv = 0, vne = 0;
for(i = 1; i <= m; ++i) vnv += node[vis[i]];
memset(visted, 0, sizeof(visted));
visted[1] = 1;
while(count < m - 1){
for(i = 1, tmp = INT_MAX; i <= m; ++i){
if(!visted[i]) continue;
for(j = 1; j <= m; ++j){
if(!visted[j] && map[vis[i]][vis[j]] < tmp){
tmp = map[vis[i]][vis[j]]; u = j;
}
}
}
if(tmp != INT_MAX){
visted[u] = 1;
vne += tmp; ++count;
}
}
return vne * 1.0 / vnv;
} void DFS(int k, int id)
{
if(id > m){
double tmp = prim();
if(tmp - ans < -(1e-8)){
ans = tmp; memcpy(store, vis, sizeof(vis));
}
return;
}
for(int i = k; i <= n; ++i){
vis[id] = i;
DFS(i + 1, id + 1);
}
} int main()
{
int i, j;
while(scanf("%d%d", &n, &m), n || m){
for(i = 1; i <= n; ++i) scanf("%d", &node[i]);
for(i = 1; i <= n; ++i)
for(j = 1; j <= n; ++j)
scanf("%d", &map[i][j]);
ans = INT_MAX;
DFS(1, 1);
for(i = 1; i <= m; ++i)
if(i != m) printf("%d ", store[i]);
else printf("%d\n", store[i]);
}
return 0;
}
HDU2489 Minimal Ratio Tree 【DFS】+【最小生成树Prim】的更多相关文章
- hdu2489 Minimal Ratio Tree dfs枚举组合情况+最小生成树
#include <stdio.h> #include <set> #include <string.h> #include <algorithm> u ...
- hdu2489 Minimal Ratio Tree
hdu2489 Minimal Ratio Tree 题意:一个 至多 n=15 的 完全图 ,求 含有 m 个节点的树 使 边权和 除 点权和 最小 题解:枚举 m 个 点 ,然后 求 最小生成树 ...
- HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)
Minimal Ratio Tree Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 Problem Description For a tree, which nodes and ...
- HDU 2489 Minimal Ratio Tree(dfs枚举+最小生成树)
想到枚举m个点,然后求最小生成树,ratio即为最小生成树的边权/总的点权.但是怎么枚举这m个点,实在不会.网上查了一下大牛们的解法,用dfs枚举,没想到dfs还有这么个作用. 参考链接:http:/ ...
- HDU 2489 Minimal Ratio Tree 最小生成树+DFS
Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 2489 Minimal Ratio Tree(prim+DFS)
Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)
Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...
- Minimal Ratio Tree HDU - 2489
Minimal Ratio Tree HDU - 2489 暴力枚举点,然后跑最小生成树得到这些点时的最小边权之和. 由于枚举的时候本来就是按照字典序的,不需要额外判. 错误原因:要求输出的结尾不能有 ...
随机推荐
- Configure Red Hat Enterprise Linux shared disk cluster for SQL Server
下面一步一步介绍一下如何在Red Hat Enterprise Linux系统上为SQL Server配置共享磁盘集群(Shared Disk Cluster)及其相关使用(仅供测试学习之用,基础篇) ...
- Ubuntu Software Center has closed unexpectly解决方案
打开软件中心Ubuntu Software Center的时候 出现crash report :The application Ubuntu Software Center has closed un ...
- Linux 查看端口占用并杀掉进程
1. 查看端口号占用情况: netstat -apn|grep 11305 tcp 0 0 10.65.42.27:80 172.22.142.20: ...
- UVA 11297 Census ——二维线段树
[题目分析] 二维线段树模板题目. 简直就是无比的暴力.时间复杂度为两个log. 标记的更新方式比较奇特,空间复杂度为N^2. 模板题目. [代码] #include <cstdio> # ...
- 算法复习——计算几何基础(zoj1081)
题目: Statement of the Problem Several drawing applications allow us to draw polygons and almost all o ...
- 【单调队列+尺取】HDU 3530 Subsequence
acm.hdu.edu.cn/showproblem.php?pid=3530 [题意] 给定一个长度为n的序列,问这个序列满足最大值和最小值的差在[m,k]的范围内的最长子区间是多长? [思路] 对 ...
- java面试题之Thread的run()和start()方法有什么区别
run()方法: 是在主线程中执行方法,和调用普通方法一样:(按顺序执行,同步执行) start()方法: 是创建了新的线程,在新的线程中执行:(异步执行) public class App { pu ...
- angular实时显示checkbox被选中的元素
/** * Created by zh on 20/05/15. */ // Code goes here var iApp = angular.module("App", []) ...
- CentOS 7 使用iptables 开放端口
CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewall: systemctl stop firewalld.service system ...
- 三类(创结行),23种设计模式,速记理解法!PHP
一,创建型设计模式 1.FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了.麦当劳 ...