#2033. 「SDOI2016」生成魔咒

 
 

题目描述

魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示。例如可以将魔咒字符 1 11、2 22 拼凑起来形成一个魔咒串 [1,2] [1, 2][1,2]。

一个魔咒串 S SS 的非空子串被称为魔咒串 S SS 的生成魔咒。

例如 S=[1,2,1] S = [1, 2, 1]S=[1,2,1] 时,它的生成魔咒有 [1] [1][1]、[2] [2][2]、[1,2] [1, 2][1,2]、[2,1] [2, 1][2,1]、[1,2,1] [1, 2, 1][1,2,1] 五种。S=[1,1,1] S = [1, 1, 1]S=[1,1,1] 时,它的生成魔咒有 [1] [1][1]、[1,1] [1, 1][1,1]、[1,1,1] [1, 1, 1][1,1,1] 三种。

最初 S SS 为空串。共进行 n nn 次操作,每次操作是在 S SS 的结尾加入一个魔咒字符。每次操作后都需要求出,当前的魔咒串 S SS 共有多少种生成魔咒。

输入格式

第一行一个整数 n nn。
第二行 n nn 个数,第 i ii 个数表示第 i ii 次操作加入的魔咒字符。

输出格式

输出 n nn 行,每行一个数。第 i ii 行的数表示第 i ii 次操作后 S SS 的生成魔咒数量。

样例

样例输入

7
1 2 3 3 3 1 2

样例输出

1
3
6
9
12
17
22

数据范围与提示

对于 10% 10\%10% 的数据,1≤n≤10 1 \leq n \leq 101≤n≤10;
对于 30% 30\%30% 的数据,1≤n≤100 1 \leq n \leq 1001≤n≤100;
对于 60% 60\%60% 的数据,1≤n≤1000 1 \leq n \leq 10001≤n≤1000;
对于 100% 100\%100% 的数据,1≤n≤100000 1 \leq n \leq 1000001≤n≤100000。

用来表示魔咒字符的数字 x xx 满足 1≤x≤109 1 \leq x \leq 10 ^ 91≤x≤10​9​​。

题解:

 离线,将插入过程变化为删除过程

  那就最开始就是一个长度为n的字符串让你求不重复字串个数

  利用后缀数组height[i]值可以求解

  那么每次删除的时候, 将位置为i的字符从 sa中删除,找到前一个存在的,和后一个存在的字符后缀串,fi,se

  那么答案更新就是

       ans =  ans  + lcp(fi,rank[i]) + lcp(ran[k],se) - lcp(fi,se);

  可以用set删,存位置

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,double>
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 1e5+, M = 1e3+,inf = 2e9; int *ran,r[N],sa[N],height[N],wa[N],wb[N],wm[N];
bool cmp(int *r,int a,int b,int l) {
return r[a] == r[b] && r[a+l] == r[b+l];
}
void SA(int *r,int *sa,int n,int m) {
int *x=wa,*y=wb,*t;
for(int i=;i<m;++i)wm[i]=;
for(int i=;i<n;++i)wm[x[i]=r[i]]++;
for(int i=;i<m;++i)wm[i]+=wm[i-];
for(int i=n-;i>=;--i)sa[--wm[x[i]]]=i;
for(int i=,j=,p=;p<n;j=j*,m=p){
for(p=,i=n-j;i<n;++i)y[p++]=i;
for(i=;i<n;++i)if(sa[i]>=j)y[p++]=sa[i]-j;
for(i=;i<m;++i)wm[i]=;
for(i=;i<n;++i)wm[x[y[i]]]++;
for(i=;i<m;++i)wm[i]+=wm[i-];
for(i=n-;i>=;--i)sa[--wm[x[y[i]]]]=y[i];
for(t=x,x=y,y=t,i=p=,x[sa[]]=;i<n;++i) {
x[sa[i]]=cmp(y,sa[i],sa[i-],j)?p-:p++;
}
}
ran=x;
}
void Height(int *r,int *sa,int n) {
for(int i=,j=,k=;i<n;height[ran[i++]]=k)
for(k?--k:,j=sa[ran[i]-];r[i+k] == r[j+k];++k);
}
int n,a[N],san[N];
LL ans;
vector<LL > an;
int dp[N][];
void Lcp_init() {
for(int i = ; i <= n; ++i) dp[i][] = height[i];
for(int j = ; (<<j) <= n; ++j) {
for(int i = ; i + (<<j) - <= n; ++i) {
dp[i][j] = min(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
}
int lcp(int l,int r) {
l++;
if(l > r) swap(l,r); int len = r - l + ;
int k = ;
while((<<(k+)) <= len) k++;
return min(dp[l][k],dp[r - (<<k) + ][k]);
}
int main() {
scanf("%d",&n);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]);
for(int i = ; i <= n; ++i) san[i] = a[i]; sort(san+,san+n+);
int SAs = unique(san+,san+n+) - san - ;
for(int i = ; i <= n; ++i)
a[i] = lower_bound(san+,san+SAs+,a[i]) - san;
int len = ;
for(int i = ; i <= n; ++i) r[len++] = a[n - i + ];
r[len] = ;
SA(r,sa,len+,n+);
Height(r,sa,n);
Lcp_init();
for(int i = ; i <= len; ++i) ans = ans + i - height[i];
set<int > s;
s.clear();
s.insert(-);
s.insert(inf);
for(int i = ; i <= len; ++i) s.insert(i);
an.push_back(ans);
for(int i = ; i < n; ++i) {
s.erase(ran[i-]);
int fi = *(--s.lower_bound(ran[i-]));
int se = *(s.lower_bound(ran[i-]));
ans = ans - (n - i + );
if(fi != -) ans += lcp(fi,ran[i-]);
if(se != inf) ans += lcp(ran[i-],se);
if(fi != - && se != inf) ans -= lcp(fi,se);
an.push_back(ans);
}
for(int i = an.size()-; i >= ; --i)
printf("%lld\n",an[i]);
return ;
}

liberOJ #2033. 「SDOI2016」生成魔咒 后缀数组的更多相关文章

  1. 【LOJ】 #2033. 「SDOI2016」生成魔咒

    题解 就是字符集较大需要离散化和建边表的后缀自动机水题 每次会加入i个新的串,其中重复的就是i的父亲节点所在节点的长度,减掉即可 代码 #include <iostream> #inclu ...

  2. [SDOI2016] 生成魔咒 - 后缀数组,平衡树,STL,时间倒流

    [SDOI2016] 生成魔咒 Description 初态串为空,每次在末尾追加一个字符,动态维护本质不同的子串数. Solution 考虑时间倒流,并将串反转,则变为每次从开头删掉一个字符,即每次 ...

  3. 【bzoj4516】[Sdoi2016]生成魔咒 后缀数组+倍增RMQ+STL-set

    题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2].一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2 ...

  4. BZOJ.4516.[SDOI2016]生成魔咒(后缀数组 RMQ)

    题目链接 后缀自动机做法见这(超好写啊). 后缀数组是可以做的: 本质不同的字符串的个数为 \(子串个数-\sum_{ht[i]}\),即 \(\frac{n(n+1)}{2}-\sum_{ht[i] ...

  5. BZOJ4516: [Sdoi2016]生成魔咒(后缀数组 set RMQ)

    题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就 ...

  6. BZOJ 4516: [Sdoi2016]生成魔咒——后缀数组、并查集

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4516 题意 一开始串为空,每次往串后面加一个字符,求本质不同的子串的个数,可以离线.即长度为 ...

  7. BZOJ 4516: [Sdoi2016]生成魔咒(后缀数组)

    传送门 解题思路 题目其实就是动态维护本质不同的串的个数.考虑到只有加数字的操作,所以可以用后缀数组.题目是每次往后加数字,这样不好处理,因为每次加数字之后所有的后缀都会改变.所以要转化一下思路,就是 ...

  8. bzoj 4516: 生成魔咒 后缀数组

    题目大意 在结尾动态插入字符,每次插入结束后输出当前串中本质不同的字串个数 题解 注意一开始是空串,然后我们我们可以打表观察规律 我们发现一直在开头插入字符和一直在结尾插入字符得到的答案是一样的 所以 ...

  9. cogs2223 [SDOI2016 Round1] 生成魔咒

    cogs2223 [SDOI2016 Round1] 生成魔咒 原题链接 题解 暴力:每次更新后缀数组??? set+二分+hash暴力 http://paste.ubuntu.com/2549629 ...

随机推荐

  1. struts2知识系统整理

    1.MVC 和 JSP Model 2 **   a.:M-Model 模型 包含两部分:业务数据和业务处理逻辑  b.V-View 视图:视图(View)的职责是负责显示界面和用户交互(收集用户信息 ...

  2. PHP socket 编程中的超时设置

    PHP socket 编程中的超时设置.网上找了半天也没找到.贴出来分享之:设置$socket 发送超时1秒,接收超时3秒: $socket = socket_create(AF_INET,SOCK_ ...

  3. poj 2318 向量的叉积二分查找

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9350   Accepted: 4451 Description ...

  4. UTF-8 编码的文件在处理时要注意 BOM 文件头问题

    最近在给项目团队开发一个基于 Java 的通用的 XML 分析器时,设计了一个方法,能够读取现成的 XML 文件进行分析处理,当然 XML 都是采用 UTF-8 进行编码的.但是在用 UltraEdi ...

  5. OC-Runtime温故知新

    每个java应用程序都有一个runtime类实例,使应用程序能够与其运行的环境相连接.可以通过getRuntime 方法获取当前运行时,应用程序不能自己创建runtime类实例.Runtime 没有构 ...

  6. 社区发现(Community Detection)算法

    作者: peghoty 出处: http://blog.csdn.net/peghoty/article/details/9286905 社区发现(Community Detection)算法用来发现 ...

  7. git(二):一些简单入门命令

    一.创建仓储(版本库) 可以创建在空目录下创建git仓库,也可以在已有项目里创建git仓储. $ mkdir NewName //仓储名 $ cd Newname //进入到该仓储目录中 $ git ...

  8. raspi串口、python串口模块pyserial

    一.安装 1.下载软件包pyserial-2.7.tar.gz   网址:https://pypi.python.org/pypi/pyserial 2.8uftp上传至/usr/local/src/ ...

  9. Effective Java P2 Item1 Consider static factory methods instead of constructors

    获得一个类的实例的传统方法是公共的构造方法,还可以提供一个公共的静态工厂方法(一个返回值为该类实例的简单静态方法), 例如Boolean(boolean 的封装类) public static Boo ...

  10. 微信小程序,不同的输入框显示

    <!--pages/index/Component/TextInput/TextInput.wxml--> <view class="viewTitle"> ...