#2033. 「SDOI2016」生成魔咒

 
 

题目描述

魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示。例如可以将魔咒字符 1 11、2 22 拼凑起来形成一个魔咒串 [1,2] [1, 2][1,2]。

一个魔咒串 S SS 的非空子串被称为魔咒串 S SS 的生成魔咒。

例如 S=[1,2,1] S = [1, 2, 1]S=[1,2,1] 时,它的生成魔咒有 [1] [1][1]、[2] [2][2]、[1,2] [1, 2][1,2]、[2,1] [2, 1][2,1]、[1,2,1] [1, 2, 1][1,2,1] 五种。S=[1,1,1] S = [1, 1, 1]S=[1,1,1] 时,它的生成魔咒有 [1] [1][1]、[1,1] [1, 1][1,1]、[1,1,1] [1, 1, 1][1,1,1] 三种。

最初 S SS 为空串。共进行 n nn 次操作,每次操作是在 S SS 的结尾加入一个魔咒字符。每次操作后都需要求出,当前的魔咒串 S SS 共有多少种生成魔咒。

输入格式

第一行一个整数 n nn。
第二行 n nn 个数,第 i ii 个数表示第 i ii 次操作加入的魔咒字符。

输出格式

输出 n nn 行,每行一个数。第 i ii 行的数表示第 i ii 次操作后 S SS 的生成魔咒数量。

样例

样例输入

7
1 2 3 3 3 1 2

样例输出

1
3
6
9
12
17
22

数据范围与提示

对于 10% 10\%10% 的数据,1≤n≤10 1 \leq n \leq 101≤n≤10;
对于 30% 30\%30% 的数据,1≤n≤100 1 \leq n \leq 1001≤n≤100;
对于 60% 60\%60% 的数据,1≤n≤1000 1 \leq n \leq 10001≤n≤1000;
对于 100% 100\%100% 的数据,1≤n≤100000 1 \leq n \leq 1000001≤n≤100000。

用来表示魔咒字符的数字 x xx 满足 1≤x≤109 1 \leq x \leq 10 ^ 91≤x≤10​9​​。

题解:

 离线,将插入过程变化为删除过程

  那就最开始就是一个长度为n的字符串让你求不重复字串个数

  利用后缀数组height[i]值可以求解

  那么每次删除的时候, 将位置为i的字符从 sa中删除,找到前一个存在的,和后一个存在的字符后缀串,fi,se

  那么答案更新就是

       ans =  ans  + lcp(fi,rank[i]) + lcp(ran[k],se) - lcp(fi,se);

  可以用set删,存位置

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,double>
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 1e5+, M = 1e3+,inf = 2e9; int *ran,r[N],sa[N],height[N],wa[N],wb[N],wm[N];
bool cmp(int *r,int a,int b,int l) {
return r[a] == r[b] && r[a+l] == r[b+l];
}
void SA(int *r,int *sa,int n,int m) {
int *x=wa,*y=wb,*t;
for(int i=;i<m;++i)wm[i]=;
for(int i=;i<n;++i)wm[x[i]=r[i]]++;
for(int i=;i<m;++i)wm[i]+=wm[i-];
for(int i=n-;i>=;--i)sa[--wm[x[i]]]=i;
for(int i=,j=,p=;p<n;j=j*,m=p){
for(p=,i=n-j;i<n;++i)y[p++]=i;
for(i=;i<n;++i)if(sa[i]>=j)y[p++]=sa[i]-j;
for(i=;i<m;++i)wm[i]=;
for(i=;i<n;++i)wm[x[y[i]]]++;
for(i=;i<m;++i)wm[i]+=wm[i-];
for(i=n-;i>=;--i)sa[--wm[x[y[i]]]]=y[i];
for(t=x,x=y,y=t,i=p=,x[sa[]]=;i<n;++i) {
x[sa[i]]=cmp(y,sa[i],sa[i-],j)?p-:p++;
}
}
ran=x;
}
void Height(int *r,int *sa,int n) {
for(int i=,j=,k=;i<n;height[ran[i++]]=k)
for(k?--k:,j=sa[ran[i]-];r[i+k] == r[j+k];++k);
}
int n,a[N],san[N];
LL ans;
vector<LL > an;
int dp[N][];
void Lcp_init() {
for(int i = ; i <= n; ++i) dp[i][] = height[i];
for(int j = ; (<<j) <= n; ++j) {
for(int i = ; i + (<<j) - <= n; ++i) {
dp[i][j] = min(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
}
int lcp(int l,int r) {
l++;
if(l > r) swap(l,r); int len = r - l + ;
int k = ;
while((<<(k+)) <= len) k++;
return min(dp[l][k],dp[r - (<<k) + ][k]);
}
int main() {
scanf("%d",&n);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]);
for(int i = ; i <= n; ++i) san[i] = a[i]; sort(san+,san+n+);
int SAs = unique(san+,san+n+) - san - ;
for(int i = ; i <= n; ++i)
a[i] = lower_bound(san+,san+SAs+,a[i]) - san;
int len = ;
for(int i = ; i <= n; ++i) r[len++] = a[n - i + ];
r[len] = ;
SA(r,sa,len+,n+);
Height(r,sa,n);
Lcp_init();
for(int i = ; i <= len; ++i) ans = ans + i - height[i];
set<int > s;
s.clear();
s.insert(-);
s.insert(inf);
for(int i = ; i <= len; ++i) s.insert(i);
an.push_back(ans);
for(int i = ; i < n; ++i) {
s.erase(ran[i-]);
int fi = *(--s.lower_bound(ran[i-]));
int se = *(s.lower_bound(ran[i-]));
ans = ans - (n - i + );
if(fi != -) ans += lcp(fi,ran[i-]);
if(se != inf) ans += lcp(ran[i-],se);
if(fi != - && se != inf) ans -= lcp(fi,se);
an.push_back(ans);
}
for(int i = an.size()-; i >= ; --i)
printf("%lld\n",an[i]);
return ;
}

liberOJ #2033. 「SDOI2016」生成魔咒 后缀数组的更多相关文章

  1. 【LOJ】 #2033. 「SDOI2016」生成魔咒

    题解 就是字符集较大需要离散化和建边表的后缀自动机水题 每次会加入i个新的串,其中重复的就是i的父亲节点所在节点的长度,减掉即可 代码 #include <iostream> #inclu ...

  2. [SDOI2016] 生成魔咒 - 后缀数组,平衡树,STL,时间倒流

    [SDOI2016] 生成魔咒 Description 初态串为空,每次在末尾追加一个字符,动态维护本质不同的子串数. Solution 考虑时间倒流,并将串反转,则变为每次从开头删掉一个字符,即每次 ...

  3. 【bzoj4516】[Sdoi2016]生成魔咒 后缀数组+倍增RMQ+STL-set

    题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2].一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2 ...

  4. BZOJ.4516.[SDOI2016]生成魔咒(后缀数组 RMQ)

    题目链接 后缀自动机做法见这(超好写啊). 后缀数组是可以做的: 本质不同的字符串的个数为 \(子串个数-\sum_{ht[i]}\),即 \(\frac{n(n+1)}{2}-\sum_{ht[i] ...

  5. BZOJ4516: [Sdoi2016]生成魔咒(后缀数组 set RMQ)

    题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就 ...

  6. BZOJ 4516: [Sdoi2016]生成魔咒——后缀数组、并查集

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4516 题意 一开始串为空,每次往串后面加一个字符,求本质不同的子串的个数,可以离线.即长度为 ...

  7. BZOJ 4516: [Sdoi2016]生成魔咒(后缀数组)

    传送门 解题思路 题目其实就是动态维护本质不同的串的个数.考虑到只有加数字的操作,所以可以用后缀数组.题目是每次往后加数字,这样不好处理,因为每次加数字之后所有的后缀都会改变.所以要转化一下思路,就是 ...

  8. bzoj 4516: 生成魔咒 后缀数组

    题目大意 在结尾动态插入字符,每次插入结束后输出当前串中本质不同的字串个数 题解 注意一开始是空串,然后我们我们可以打表观察规律 我们发现一直在开头插入字符和一直在结尾插入字符得到的答案是一样的 所以 ...

  9. cogs2223 [SDOI2016 Round1] 生成魔咒

    cogs2223 [SDOI2016 Round1] 生成魔咒 原题链接 题解 暴力:每次更新后缀数组??? set+二分+hash暴力 http://paste.ubuntu.com/2549629 ...

随机推荐

  1. Java日志实战及解析

    Java日志实战及解析 日志是程序员必须掌握的基础技能之一,如果您写的软件没有日志,可以说你没有成为一个真正意义上的程序员. 为什么要记日志? •       监控代码 •       变量变化情况, ...

  2. Opencv学习笔记——视频高斯模糊并分别输出

    用两个窗口进行对比 #include "stdafx.h" #include <iostream> #include <opencv2/core/core.hpp ...

  3. 算法复习——欧拉回路混合图(bzoj2095二分+网络流)

    题目: Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛.现在YYD想骑单车 ...

  4. leetcode 144 先序遍历和中序遍历差不多

    这是只写了先序遍历的非递归代码 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode * ...

  5. centos7 下修改网络配置

    修改ip地址 编辑 /etc/sysconfig/network-scripts/ifcfg-eth0 TYPE=Ethernet BOOTPROTO=static 静态ip DEFROUTE=yes ...

  6. (45)C#网络3 socket

    一.TCP传输 using System.Net.Sockets; 1.最基本客户端连服务器 服务端运行后一直处于监听状态,客户端每启动一次服务端就接收一次连接并打印客户端的ip地址和端口号.(服务端 ...

  7. c++ 高效并发编程

    高效并发编程 并发编程的基本模型包括,通过消息机制来管理运行顺序的message passing, 通过互斥保护共享的shared memory. 线程同步的基本原则 最低限度共享变量,考虑使用imm ...

  8. NOIPSB评测机+SB题DAY2

    忍者钩爪 题目描述 小 Q 是一名酷爱钩爪的忍者, 最喜欢飞檐走壁的感觉, 有一天小 Q 发现一个练习使用钩 爪的好地方,决定在这里大显身手. 场景的天花板可以被描述为一个无穷长的数轴, 初始小 Q ...

  9. Java并发编程实战 读书笔记(二)

    关于发布和逸出 并发编程实践中,this引用逃逸("this"escape)是指对象还没有构造完成,它的this引用就被发布出去了.这是危及到线程安全的,因为其他线程有可能通过这个 ...

  10. qq空间微博等更多社交平台分享

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...