Codeforces 185A Plant( 递推关系 + 矩阵快速幂 )
链接:传送门
题意:输出第 n 年向上小三角形的个数 % 10^9 + 7
思路:
设 Fn 为第 n 年向上小三角形的个数,经过分析可以得到 Fn = 3 * Fn-1 + ( 4^(n-1) - Fn-1 ),根据这个递推式可以用矩阵快速幂来解决。
下面三个矩阵设为矩阵 a ,b ,ans
- 矩阵 a:
2 1 0 4 - 矩阵 b:
Fn-1 0 4^(n-1) 0 - 矩阵 ans:
Fn 0 4^n 0 - 这样就可以表示出 上方递推关系了 ,所以 ans = Matrixpow( a, n-1 ) * b( n > 1 )
balabala:看来矩阵快速幂一般和递推关系相结合呀~
/*************************************************************************
> File Name: codeforces185At2.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月03日 星期三 19时42分09秒
************************************************************************/
#include<bits/stdc++.h>
using namespace std;
const int MOD = 1000000007;
const int maxn = 3;
#define ll long long
#define mod(x) ((x)%MOD)
struct mat{
int m[maxn][maxn];
}unit;
mat operator *(mat a,mat b){
mat ret;
ll x;
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
x = 0;
for(int k=0;k<2;k++)
x += mod( (ll)a.m[i][k]*b.m[k][j] );
ret.m[i][j] = x;
}
}
return ret;
}
mat pow_mat(mat a,ll x){
mat ret = unit;
while(x){
if(x&1) ret = ret*a;
a = a*a;
x >>= 1;
}
return ret;
}
void init_unit(){
for(int i=0;i<2;i++) unit.m[i][i] = 1;
return;
}
mat a,b;
void init(){
memset(a.m,0,sizeof(a.m));
memset(b.m,0,sizeof(b.m));
a.m[0][0] = 2; a.m[0][1] = 1; a.m[1][1] = 4;
b.m[0][0] = 3; b.m[1][0] = 4;
}
int main(){
init_unit();
init();
ll n;
while(cin>>n){
if(n==0) cout<<"1"<<endl;
else if(n==1) cout<<"3"<<endl;
else{
mat ans = pow_mat(a,n-1);
ans = ans*b;
cout<< mod(ans.m[0][0]) <<endl;
}
}
return 0;
}
Codeforces 185A Plant( 递推关系 + 矩阵快速幂 )的更多相关文章
- CodeForces - 691E Xor-sequences 【矩阵快速幂】
题目链接 http://codeforces.com/problemset/problem/691/E 题意 给出一个长度为n的序列,从其中选择k个数 组成长度为k的序列,因为(k 有可能 > ...
- HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )
链接:传送门 题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E- ...
- Codeforces 691E题解 DP+矩阵快速幂
题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...
- Codeforces 691E Xor-sequences(矩阵快速幂)
You are given n integers a1, a2, ..., an. A sequence of integers x1, x2, ..., xk is called a & ...
- Codeforces 954 dijsktra 离散化矩阵快速幂DP 前缀和二分check
A B C D 给你一个联通图 给定S,T 要求你加一条边使得ST的最短距离不会减少 问你有多少种方法 因为N<=1000 所以N^2枚举边数 迪杰斯特拉两次 求出Sdis 和 Tdis 如果d ...
- Plant (矩阵快速幂)
题目链接:http://codeforces.com/problemset/problem/185/A 题目: Dwarfs have planted a very interesting plant ...
- hdu 4602 递推关系矩阵快速幂模
Partition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- uva 10870 递推关系矩阵快速幂模
Recurrences Input: standard input Output: standard output Consider recurrent functions of the follow ...
- CodeForces 185A. Plant (矩阵快速幂)
CodeForces 185A. Plant (矩阵快速幂) 题意分析 求解N年后,向上的三角形和向下的三角形的个数分别是多少.如图所示: N=0时只有一个向上的三角形,N=1时有3个向上的三角形,1 ...
随机推荐
- 一、简介 ELO商户类别推荐有助于了解客户忠诚度
Elo Merchant Category Recommendation Help understand customer loyalty (ELO商户类别推荐有助于了解客户忠诚度) 竞赛描述: 想象 ...
- -1 深度学习基础caffe
一.反思 二.反向传播 三.ubuntu安装caffe 四.追踪关键词
- HDU1058 - Humble Numbers
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...
- JAVAEE网上商城项目总结
发送邮件实现(使用QQ邮箱发送到指定邮箱) 需要的jar 邮件发送类代码: package util; import java.util.Properties; import javax.mail.A ...
- [Office]PPT 2013如何设置图片为半透明?
PPT里面似乎无法直接为图片设置透明度属性.下面是一种变通的办法. 1,插入一个和图片大小一致的图形(矩形):2,右键插入的矩形,然后在属性设置里选择“图片填充”,选择以需要的图片填充到该矩形里:3, ...
- http协议区分头信息和正文
http协议中的头信息和正文是採用空行分开,什么是空行呢?简单来说,就是\r\n\r\n. 所以将server返回的数据用\r\n\r\n分开后的结果,一个是头信息.一个是正文信息. C#的代码例如以 ...
- VMWare虚拟机下为Ubuntu 12.04.1网络设置(NAT方式)
NAT方式: 虚拟机能够上外网,能够訪问宿主计算机所在网络的其它计算机(反之不行). 第一步:设置虚拟机vmware网络參数 (1)打开虚拟机,选择菜单"编辑">" ...
- 让VMware ESXi虚拟交换机支持VLAN
眼下虚拟化应用比較广泛,通常情况下.一台物理主机在安装VMware ESXi或Hyper-V虚拟机软件后.能够在一台物理主机上创建多个虚拟机,而且创建的每一个虚拟机能够像原来的物理一样对外提供服务,这 ...
- Unity3D摄像机尾随人物
这里的镜头主要是从人物的背后尾随的. 首先新建一个C#脚本,命名为MyFollow,然后把下面代码粘贴进去.保存: using UnityEngine; using System.Collection ...
- LinkedList 方法知识点
package test_day_9; import java.util.Iterator; import java.util.LinkedList; public class LinkedListD ...