题目大意:

洛谷传送门

不愧为SDOI的duliu题

第一问?二元组的最长不上升子序列长度?裸的三维偏序问题,直接上$CDQ$

由于是不上升,需要查询某一范围的最大值,并不是前缀最大值,建议用线段树实现

第二问是个什么玩意??

画画图发现需要正反各做一次$CDQ$来统计

如果某个位置正反的答案$-1$就是最长长度

那么它被选择的次数就是 正着统计作为末尾的次数*反着统计作为末尾的次数

概率就是这个值/总次数

又发现某个位置作为末尾的次数可能非常非常大!

比如$1\;1\;2\;2\;3\;3\;4\;4\;5\;5....$这个值甚至达到了$2^{n/2}$

而题目又是让我们求概率,所以这个次数必须要用$double$存

蒟蒻的代码写得比较恶心..

另外听一些神犇说$sort$中的$cmp$里不能写$<=$或$>=$,不然会$RE$

 #include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 50100
#define ll long long
#define dd double
#define inf 0x3f3f3f3f3f3f3f3fll
using namespace std; int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
}
int n,m,mh,mv,K;
inline void chk(int &ma,dd &sum,int w,dd num)
{
if(w>ma) ma=w,sum=num;
else if(w==ma) sum+=num;
} struct SEG{
int ma[N1<<]; dd sum[N1<<];
void pushup(int rt)
{
ma[rt]=; sum[rt]=;
chk(ma[rt],sum[rt],ma[rt<<],sum[rt<<]);
chk(ma[rt],sum[rt],ma[rt<<|],sum[rt<<|]);
}
void update(int x,int l,int r,int rt,int w,dd num)
{
if(l==r) { chk(ma[rt],sum[rt],w,num); return; }
int mid=(l+r)>>;
if(x<=mid) update(x,l,mid,rt<<,w,num);
else update(x,mid+,r,rt<<|,w,num);
pushup(rt);
}
void query(int L,int R,int l,int r,int rt,int &w,dd &num)
{
if(L<=l&&r<=R) { chk(w,num,ma[rt],sum[rt]); return; }
int mid=(l+r)>>;
if(L<=mid) query(L,R,l,mid,rt<<,w,num);
if(R>mid) query(L,R,mid+,r,rt<<|,w,num);
}
void clr(int x,int l,int r,int rt)
{
ma[rt]=; sum[rt]=;
if(l==r) return; int mid=(l+r)>>;
if(x<=mid) clr(x,l,mid,rt<<);
else clr(x,mid+,r,rt<<|);
}
}s;
struct node{int h,v,t,ans; dd sum;}a[N1],c[N1],tmp[N1];
int h[N1],v[N1],que[N1],tl; int cmp1(node s1,node s2){ if(s1.h!=s2.h) return s1.h>s2.h; return s1.v>=s2.v; }
int cmp2(node s1,node s2){ if(s1.h!=s2.h) return s1.h<s2.h; return s1.v<=s2.v; }
int cmpp(node s1,node s2){ if(s1.h!=s2.h) return s1.h>s2.h; return s1.v>s2.v; }
int cmpn(node s1,node s2){ if(s1.h!=s2.h) return s1.h<s2.h; return s1.v<s2.v; } void CDQ1(int L,int R)
{
if(R-L<=) return;
int M=(L+R)>>,i,j,k,cnt;
for(i=L,j=M,k=L;k<R;k++)
{
if(a[k].t<M) tmp[i++]=a[k];
else tmp[j++]=a[k];
}
for(k=L;k<R;k++) a[k]=tmp[k];
CDQ1(L,M);
for(i=L,j=M;i<M&&j<R;)
{
if(cmp1(a[i],a[j])) { s.update(a[i].v,,mv,,a[i].ans+,a[i].sum); que[++tl]=i; i++; }
else { s.query(a[j].v,mv,,mv,,a[j].ans,a[j].sum); j++; }
}
while(j<R) { s.query(a[j].v,mv,,mv,,a[j].ans,a[j].sum); j++;}
while(tl) { s.clr(a[que[tl--]].v,,mv,); }
CDQ1(M,R);
for(i=L,j=M,cnt=;i<M&&j<R;)
{
if(cmp1(a[i],a[j])) { tmp[++cnt]=a[i]; i++; }
else { tmp[++cnt]=a[j]; j++;}
}
while(i<M) tmp[++cnt]=a[i++];
while(j<R) tmp[++cnt]=a[j++];
for(k=L;k<R;k++) a[k]=tmp[k-L+];
}
void CDQ2(int L,int R)
{
if(R-L<=) return;
int M=(L+R)>>,i,j,k,cnt;
for(i=L,j=M,k=L;k<R;k++)
{
if(a[k].t<M) tmp[i++]=a[k];
else tmp[j++]=a[k];
}
for(k=L;k<R;k++) a[k]=tmp[k];
CDQ2(L,M);
for(i=L,j=M;i<M&&j<R;)
{
if(cmp2(a[i],a[j])) { s.update(a[i].v,,mv,,a[i].ans+,a[i].sum); que[++tl]=i; i++; }
else { s.query(,a[j].v,,mv,,a[j].ans,a[j].sum); j++; }
}
while(j<R) { s.query(,a[j].v,,mv,,a[j].ans,a[j].sum); j++;}
while(tl) { s.clr(a[que[tl--]].v,,mv,); }
CDQ2(M,R);
for(i=L,j=M,cnt=;i<M&&j<R;)
{
if(cmp2(a[i],a[j])) { tmp[++cnt]=a[i]; i++; }
else { tmp[++cnt]=a[j]; j++;}
}
while(i<M) tmp[++cnt]=a[i++];
while(j<R) tmp[++cnt]=a[j++];
for(k=L;k<R;k++) a[k]=tmp[k-L+];
}
dd ret[N1];
int p[N1];
int de; int main()
{
scanf("%d",&n);
int i,j,x,y,ans=; dd sum=;
for(i=;i<=n;i++) { h[i]=a[i].h=gint(); v[i]=a[i].v=gint(); a[i].t=i; a[i].ans=; a[i].sum=; }
sort(h+,h+n+); mh=unique(h+,h+n+)-(h+); sort(v+,v+n+); mv=unique(v+,v+n+)-(v+);
for(i=;i<=n;i++) { a[i].h=lower_bound(h+,h+mh+,a[i].h)-h; a[i].v=lower_bound(v+,v+mv+,a[i].v)-v;}
sort(a+,a+n+,cmpp);
CDQ1(,n+);
for(i=;i<=n;i++) { c[i]=a[i]; p[a[i].t]=i; chk(ans,sum,a[i].ans,a[i].sum); }
sort(a+,a+n+,cmpn); for(i=;i<=n;i++) { a[i].ans=; a[i].sum=; a[i].t=n-a[i].t+; }
CDQ2(,n+);
for(i=;i<=n;i++)
{
j=p[n-a[i].t+];
if(a[i].ans+c[j].ans-<ans) ret[c[j].t]=;
else ret[c[j].t]=1.0*c[j].sum*a[i].sum/sum;
}
printf("%d\n",ans);
for(i=;i<=n;i++) printf("%.5lf ",ret[i]);
puts(""); return ;
}

BZOJ 2244 [SDOI2011]拦截导弹 (三维偏序CDQ+线段树)的更多相关文章

  1. bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] ...

  2. bzoj 2244 [SDOI2011]拦截导弹(dp+CDQ+树状数组)

    传送门 题解 看了半天完全没发现这东西和CDQ有什么关系…… 先把原序列翻转,求起来方便 然后把每一个位置表示成$(a,b,c)$其中$a$表示位置,$b$表示高度,$c$表示速度,求有多少个位置$a ...

  3. BZOJ 2244: [SDOI2011]拦截导弹 DP+CDQ分治

    2244: [SDOI2011]拦截导弹 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截 ...

  4. bzoj 2244: [SDOI2011]拦截导弹 cdq分治

    2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 237  Solved: ...

  5. BZOJ 2244: [SDOI2011]拦截导弹 (CDQ分治 三维偏序 DP)

    题意 略- 分析 就是求最长不上升子序列,坐标取一下反就是求最长不下降子序列,比较大小是二维(h,v)(h,v)(h,v)的比较.我们不看概率,先看第一问怎么求最长不降子序列.设f[i]f[i]f[i ...

  6. BZOJ 2244 [SDOI2011]拦截导弹 ——CDQ分治

    三维偏序,直接CDQ硬上. 正反两次CDQ统计结尾的方案数,最后统计即可. #include <cstdio> #include <cstring> #include < ...

  7. BZOJ 2244: [SDOI2011]拦截导弹 [CDQ分治 树状数组]

    传送门 题意:三维最长不上升子序列以及每个元素出现在最长不上升子序列的概率 $1A$了好开心 首先需要从左右各求一遍,长度就是$F[0][i]+F[1][i]-1$,次数就是$G[0][i]*G[1] ...

  8. bzoj 2244: [SDOI2011]拦截导弹

    #include<cstdio> #include<iostream> #include<algorithm> #define M 100009 using nam ...

  9. BZOJ:2244: [SDOI2011]拦截导弹

    问题: printf("%.5f ",0):为什么错了? 注意: 初始值很重要 题解: 三维偏序问题: 记录从前往后最长上升子序列长度pref,条数preg 从后往前suff,su ...

随机推荐

  1. java实现QQ空间模拟登录

    import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import j ...

  2. Dict字典的操作

    字典的操作 1.字典新增键值对 已存在内容的字典新增 alient_0 = {"color":"green",position:10} alient_0[&qu ...

  3. 【hdu 6351】Beautiful Now

    [链接] 我是链接,点我呀:) [题意] 你可以最多交换k次数字. 让你组成一个最大的和一个最小的数字. [题解] 直接写个bfs.求出所有状态的最小交换次数. 但是最大值和最小值分开写. 做最大值的 ...

  4. 设置编码格式为utf8

    response.setCharacterEncoding("UTF-8"); 在Servlet2.3中是不行的,至少要2.4版本才可以,如果低于2.4版本,可以用如下办法: re ...

  5. 解决VTune错误PMU resources currently being used by another profiling tool or process

    错误信息: When I ran Hardware Event-based Sampling Analysis 0, it showed the ERROR: Collection failed Co ...

  6. myeclipse集成svn

    svn安装 这个我在博客中的代码管理里面有些,也是一直next.svn代码管理版本号管理器安装好之后. myeclipse的svn插件 方法一: 然后配置MyEclipse的SVN插件,将插件下载下来 ...

  7. HDFS学习笔记(1)初探HDFS

    Hadoop分布式文件系统(Hadoop Distributed File System, HDFS) 分布式文件系统是一种同意文件通过网络在多台主机上分享的文件系统.可让多机器上的多用户分享文件和存 ...

  8. wpf Shake

    <Setter Property="RenderTransformOrigin" Value="0.5 0.5" /> <Setter Pro ...

  9. java应用集锦9:httpclient4.2.2的几个常用方法,登录之后访问页面问题,下载文件

    转账注明出处:http://renjie120.iteye.com/blog/1727933 在工作中要用到android,然后进行网络请求的时候,打算使用httpClient. 总结一下httpCl ...

  10. SAN (Storage Attached Network),即存储区域网络

    NAS和SAN既竞争又合作,很多高端NAS的后端存储就是SAN.NAS和SAN的整合也是存储设备的发展趋势,比如EMC的新产品VNX系列. 关于NAS和SAN的区别,可以列出很多来.比如带宽大小,距离 ...