Nico Number


Time Limit: 2 Seconds      Memory Limit: 262144 KB


Kousaka Honoka and Minami Kotori are playing a game about a secret of Yazawa Nico.

When the game starts, Kousaka Honoka will
give Minami Kotori an array A of N non-negative
integers. There is a special kind of number in the array, which is called NicoNico-number.
We call a integer x is a NicoNico-number,
if all integers(no more than x) that is coprime with x could
form an Arithmetic Sequence.

Then Minami Kotori will
choose some consecutive part of the array A, wondering the number of NicoNico-number in
this part. What's more, Kousaka Honoka sometimes modify the value of some consecutive elements
in the array. Now it is your task to simulate this game!

Input

There are multiple test cases in input, you should process to the end of file.

For each case, the first line is an integer N, the number of elements in the array described above. Then second line contains N integers no greater than 107,
the elements of the array initially.(1 <= N <= 100,000)

The third line is a integer T, the number of the operations of the game. Each line of the following T lines is in one of the following formats.(1 <= T <= 100,000)

"1 L R" : Minami Kotori will chooses the consecutive part of the array from the Lth to Rth element inclusive. (1 <= L <= R <= N)

"2 L R v" : Kousaka Honoka will change the value of the pth element A[p] in the array to A[p]%v for all L <= p <= R.(1 <= L <=
R <= N, 1 <= v <= 107
)

"3 p x" : Kousaka Honoka will change the value of the p th element A[p] to x.(1 <= p <= N, 1 <= x <= 107)

Output

Each time when Minami Kotori chooses some part of the array, you should output a line, the number of NicoNico-number in that part.

Sample Input

3
4 6 9
6
1 1 3
1 3 3
2 1 1 10
1 1 3
3 2 4
1 1 3

Sample Output

2
0
2
2

Hint

4 is a NicoNico-number because only 1 and 3 is coprime with 4 among the integers no greater than 4, and could form an Arithmetic Sequence {1,3}.

题目大意:定义一个NicoNico-number,假设x是NicoNico-number,那么全部小于x的且与x互质的整数是一个等差数列,初始给出n个数字的数组,三种操作:

1 l r 问在[l,r]内有多少个NicoNico-number数

2 l r v 对于[l,r]内的数所有对v取余

3 k x 将第k个数换为x

对每一次询问做出输出。

1、首先写一个找规律的,发现NicoNico-number是有三种组成的第一种是素数,另外一种是2的x次幂,第三种是6

2、那么能够建一个数组。直接标记某个数是不是NicoNico-number

3、使用线段树维护一段区间的NicoNico-number个数,然后能够进行对某一个数的改动,和对一个区间的查询。

对于另外一种操作。我们要知道对于一个数x取余操作。最多会运行log(x)次。由于每次取余至少数值会降低一半。所以对于每一个数来说最多会有log(x)次操作,之后会由于v大于当前值,而不用运行操作。既然取余的次数不多,那么就能够对区域操作进行暴力,维护一段区间的最大值,假设最大值小于v,那么这一段不用更新,否则就遍历的最低层进行取余。

4、对于n个数来说,查找到一个数须要log(n),一个数最多会被改动log(x)次,所以总的时间不会超过n*log(n)*log(x)。

#include <cstdio>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <cmath>
#include <map>
#include <stack>
#include <algorithm>
using namespace std ;
#define LL __int64
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define root 1,n,1
#define int_rt int l,int r,int rt
#define lson l,(l+r)/2,rt<<1
#define rson (l+r)/2+1,r,rt<<1|1
const int mod = 1e9+7 ;
const double eqs = 1e-9 ;
int cl[400000] , num[400000] ;
int a[10000005] , check[10000005] ;
int tot ;
void init() {
memset(check,-1,sizeof(check)) ;
tot = 0 ;
for(int i = 2 ; i <= 10000000 ; i++) {
if( check[i] == -1 ){
a[tot++] = i ;
check[i] = 1 ;
}
for(int j = 0 ; j < tot ; j++) {
if( i*a[j] >= 10000000 ) break ;
check[i*a[j]] = 0 ;
if( i%a[j] == 0 ) break ;
}
}
check[0] = check[1] = check[6] = 1 ;
for(int i = 2 ; i <= 10000000 ; i *= 2)
check[i] = 1 ;
}
void push_up(int rt) {
cl[rt] = max(cl[rt<<1],cl[rt<<1|1]) ;
num[rt] = num[rt<<1]+num[rt<<1|1] ;
}
void create(int_rt) {
cl[rt] = num[rt] = 0 ;
if( l == r ) {
scanf("%d", &cl[rt]) ;
if( check[ cl[rt] ] == 1 ) num[rt] = 1 ;
return ;
}
create(lson) ;
create(rson) ;
push_up(rt) ;
}
void update1(int ll,int rr,int v,int_rt) {
if( ll > r || rr < l ) return ;
if( cl[rt] < v ) return ;
if( l == r ) {
cl[rt] %= v ;
if( check[ cl[rt] ] == 1 ) num[rt] = 1 ;
else num[rt] = 0 ;
return ;
}
update1(ll,rr,v,lson) ;
update1(ll,rr,v,rson) ;
push_up(rt) ;
}
void update2(int k,int x,int_rt) {
if( l == r && l == k ) {
cl[rt] = x ;
if( check[ cl[rt] ] == 1 ) num[rt] = 1 ;
else num[rt] = 0 ;
return ;
}
int mid = (l+r)/2 ;
if(k <= mid) update2(k,x,lson) ;
else update2(k,x,rson) ;
push_up(rt) ;
}
int query(int ll,int rr,int_rt) {
if( ll > r || rr < l ) return 0 ;
if( ll <= l && rr >= r ) return num[rt] ;
return query(ll,rr,lson) + query(ll,rr,rson) ;
}
int main() {
int n , m , i , k , l , r , v , x ;
init() ;
while( scanf("%d", &n) !=EOF ) {
create(root) ;
scanf("%d", &m) ;
while( m-- ) {
scanf("%d", &k) ;
if( k == 1 ) {
scanf("%d %d", &l, &r) ;
printf("%d\n", query(l,r,root)) ;
}
else if( k == 2 ) {
scanf("%d %d %d", &l, &r, &v) ;
update1(l,r,v,root) ;
}
else {
scanf("%d %d", &i, &x) ;
update2(i,x,root) ;
}
}
}
return 0 ;
}

zoj3886--Nico Number(素数筛+线段树)的更多相关文章

  1. ZOJ 3886 Nico Number(筛素数+Love(线)Live(段)树)

    problemCode=3886">ZOJ 3886 题意: 定义一种NicoNico数x,x有下面特征: 全部不大于x且与x互质的数成等差数列,如x = 5 ,与5互素且不大于5的数 ...

  2. ACM Minimum Inversion Number 解题报告 -线段树

    C - Minimum Inversion Number Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  3. HDU_3071 Gcd & Lcm game 【素数分解 + 线段树 + 状压】

    一.题目  Gcd & Lcm game 二.分析 非常好的一题. 首先考虑比较暴力的做法,肯定要按区间进行处理,对于$lcm$和$gcd$可以用标准的公式进行求,但是求$lcm$的时候是肯定 ...

  4. FZU 2297 Number theory【线段树/单点更新/思维】

    Given a integers x = 1, you have to apply Q (Q ≤ 100000) operations: Multiply, Divide. Input First l ...

  5. Hdu P1394 Minimum Inversion Number | 权值线段树

    题目链接 题目翻译: 约定数字序列a1,a2,...,an的反转数是满足i<j和ai>aj的数对(ai,aj)的数量. 对于给定的数字序列a1,a2,...,an,如果我们将第1到m个数字 ...

  6. [POJ2104] K – th Number (可持久化线段树 主席树)

    题目背景 这是个非常经典的主席树入门题--静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输 ...

  7. ZOJ 3911Prime Query [素数处理 + 线段树]

    Time Limit: 5 Seconds Memory Limit: 196608 KBYou are given a simple task. Given a sequence A[i] with ...

  8. 埃氏筛+线段树——cf731F

    从2e5-1依次枚举每个数作为主显卡,然后分段求比它大的数的个数,这里的复杂度是调和级数ln2e5,即埃氏筛的复杂度.. #include<bits/stdc++.h> using nam ...

  9. (中等) POJ 2886 Who Gets the Most Candies? , 反素数+线段树。

    Description N children are sitting in a circle to play a game. The children are numbered from 1 to N ...

随机推荐

  1. 【STM32H7教程】第23章 STM32H7的MPU内存保护单元(重要)

    完整教程下载地址:http://forum.armfly.com/forum.php?mod=viewthread&tid=86980 第23章       STM32H7的MPU内存保护单元 ...

  2. Mvc程序字体加载失败问题

    在我们开发的asp.net-mvc项目中,有时会出现字体加载失败的现象,但是一检查字体文件目录,发现文件目录都是存在的且有效的,这是为何呢?原来需要再web.config文件中添价少许配置代码就搞定. ...

  3. nprogress进度条和ajax全局事件

    nprogress和ajax全局事件 nprogress 官方网站:http://ricostacruz.com/nprogress/ 下载地址:https://github.com/rstacruz ...

  4. CentOS 安装dotNetCore

    如果要在CentOS上运行.net Core程序,必须安装.net Core Sdk 具体安装 方法,可以参考微软官方站点说明,非常详细: 1)百度搜索 .Net Core 2)先择CentOS版本: ...

  5. 【Oracle】解决oracle sqlplus 中上下左右backspace不能用

    一. 解决输入 BACKSPACE 键变成 ^h 的问题 #su - oracle   $stty erase ^h. 要永久生效,可以加入到用户环境配置文件.bash_profile中(vi .ba ...

  6. ubuntu16.04安装KDE

    由于对KDE界面情有独钟,升级到ubuntu之后,第一件事就是安装kde桌面 命令: add-apt-repository ppa:kubuntu-ppa/backports apt-get upda ...

  7. EKF优化:协方差coff计算公式、意义、Code优化

    复习!复习! 原文链接:http://blog.csdn.net/goodshot/article/details/8611178 1.代码: Matlab相关系数的意义: Eigen::Matrix ...

  8. HDU_1729_sg函数(dfs)

    Stone Game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total ...

  9. mysql主从机制的部署与应用

    部署mysql主从复制 Mysql master ip: 192.168.30.25   一主两从 Mysql slave ip: 192.168.30.24 Mysql slave ip:192.1 ...

  10. 卸载hyper-v后 仍然提示 vmware 与 hyper-v 不兼容

    已经卸载了hyper-v 仍然提示 vmware 与 hyper-v 不兼容:天天模拟器,提示VT模式没有开启,BIOS里面已经设置过了 环境win10,vm的失败和模拟器的失败都是hyper-v冲突 ...