Trie树,也叫字典树、前缀树。可用于”predictive text”和”autocompletion”。亦可用于统计词频(边插入Trie树边更新或加入词频)。

计算机科学中。trie,又称前缀树字典树。是一种有序,用于保存关联数组,当中的键一般是字符串。与二叉查找树不同。键不是直接保存在节点中,而是由节点在树中的位置决定。一个节点的全部子孙都有同样的前缀,也就是这个节点相应的字符串,而根节点相应空字符串

普通情况下,不是全部的节点都有相应的值,仅仅有叶子节点和部分内部节点所相应的键才有相关的值。

參考资料:http://zh.wikipedia.org/wiki/Trie

#!/usr/bin/python
# -*- coding:utf-8 -*-
# * trie, prefix tree, can be used as a dict
# * author: yangxudongsuda@gmail.com
import sys
reload(sys)
sys.setdefaultencoding("utf-8") # Singleton sentinel - works with pickling
class NULL(object):
pass class Node:
def __init__(self, value = NULL):
self.value = value
self.children = {} class Trie(object):
def __init__(self):
self.root = Node() def insert(self, key, value = None, sep = ' '): # key is a word sequence separated by 'sep'
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
for e in elements:
if not e: continue
if e not in node.children:
child = Node()
node.children[e] = child
node = child
else:
node = node.children[e]
node.value = value def get(self, key, default = None, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
for e in elements:
if e not in node.children:
return default
node = node.children[e]
return default if node.value is NULL else node.value def delete(self, key, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
return self.__delete(elements) def __delete(self, elements, node = None, i = 0):
node = node if node else self.root
e = elements[i]
if e in node.children:
child_node = node.children[e]
if len(elements) == (i+1):
if child_node.value is NULL: return False # not in dict
if len(child_node.children) == 0:
node.children.pop(e)
else:
child_node.value = NULL
return True
elif self.__delete(elements, child_node, i+1):
if len(child_node.children) == 0:
return node.children.pop(e)
return True
return False def shortest_prefix(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
results = []
node = self.root
value = node.value
for e in elements:
if e in node.children:
results.append(e)
node = node.children[e]
value = node.value
if value is not NULL:
return sep.join(results)
else:
break
if value is NULL:
if default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
return sep.join(results) def longest_prefix(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
results = []
node = self.root
value = node.value
for e in elements:
if e not in node.children:
if value is not NULL:
return sep.join(results)
elif default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
results.append(e)
node = node.children[e]
value = node.value
if value is NULL:
if default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
return sep.join(results) def longest_prefix_value(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
value = node.value
for e in elements:
if e not in node.children:
if value is not NULL:
return value
elif default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
node = node.children[e]
value = node.value
if value is not NULL:
return value
if default is not NULL:
return default
raise Exception("no item matches any prefix of the given key!") def longest_prefix_item(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
value = node.value
results = []
for e in elements:
if e not in node.children:
if value is not NULL:
return (sep.join(results), value)
elif default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
results.append(e)
node = node.children[e]
value = node.value
if value is not NULL:
return (sep.join(results), value)
if default is not NULL:
return (sep.join(results), default)
raise Exception("no item matches any prefix of the given key!") def __collect_items(self, node, path, results, sep):
if node.value is not NULL:
results.append((sep.join(path), node.value))
for k, v in node.children.iteritems():
path.append(k)
self.__collect_items(v, path, results, sep)
path.pop()
return results def items(self, prefix, sep = ' '):
elements = prefix if isinstance(prefix, list) else prefix.split(sep)
node = self.root
for e in elements:
if e not in node.children:
return []
node = node.children[e]
results = []
path = [prefix]
self.__collect_items(node, path, results, sep)
return results def keys(self, prefix, sep = ' '):
items = self.items(prefix, sep)
return [key for key,value in items] if __name__ == '__main__':
trie = Trie()
trie.insert('happy 站台', 1)
trie.insert('happy 站台 xx', 10)
trie.insert('happy 站台 xx yy', 11)
trie.insert('happy 站台 美食 购物 广场', 2)
trie.insert('sm')
trie.insert('sm 国际', 22)
trie.insert('sm 国际 广场', 2)
trie.insert('sm 城市广场', 3)
trie.insert('sm 广场', 4)
trie.insert('sm 新生活 广场', 5)
trie.insert('sm 购物 广场', 6)
trie.insert('soho 尚都', 3) print trie.get('sm')
print trie.longest_prefix([], default="empty list")
print trie.longest_prefix('sm')
print trie.shortest_prefix('happy 站台')
print trie.shortest_prefix('happy 站台 xx')
print trie.shortest_prefix('sm')
print trie.longest_prefix('sm xx', sep = '&', default = None)
print 'sm 广场 --> ', trie.get('sm 广场')
print trie.get('sm 广场'.split(' '))
print trie.get('神马')
print trie.get('happy 站台')
print trie.get('happy 站台 美食 购物 广场')
print trie.longest_prefix('soho 广场', 'default')
print trie.longest_prefix('soho 尚都 广场')
print trie.longest_prefix_value('soho 尚都 广场')
print trie.longest_prefix_value('xx 尚都 广场', 90)
print trie.longest_prefix_value('xx 尚都 广场', 'no prefix')
print trie.longest_prefix_item('soho 尚都 广场') print '============== keys ================='
print 'prefix "sm": ', ' | '.join(trie.keys('sm'))
print '============== items ================='
print 'prefix "sm": ', trie.items('sm') print '================= delete ====================='
print trie.delete('sm 广场')
print trie.get('sm 广场')
print trie.delete('sm 国际')
print trie.get('sm 国际')
print trie.delete('sm xx')
print trie.delete('xx') print '====== no item matches any prefix of given key ========'
print trie.longest_prefix_value('happy')
print trie.longest_prefix_value('soho xx')

执行结果:

None

empty list

sm

happy 站台

happy 站台

sm

None

sm 广场 -->  4

4

None

1

2

default

soho 尚都

3

90

no prefix

('soho \xe5\xb0\x9a\xe9\x83\xbd', 3)

============== keys =================

prefix "sm":  sm | sm 新生活 广场 | sm 城市广场 | sm 广场 | sm 购物 广场 | sm 国际 | sm 国际 广场

============== items =================

prefix "sm":  [('sm', None), ('sm \xe6\x96\xb0\xe7\x94\x9f\xe6\xb4\xbb \xe5\xb9\xbf\xe5\x9c\xba', 5), ('sm \xe5\x9f\x8e\xe5\xb8\x82\xe5\xb9\xbf\xe5\x9c\xba', 3), ('sm \xe5\xb9\xbf\xe5\x9c\xba', 4), ('sm \xe8\xb4\xad\xe7\x89\xa9 \xe5\xb9\xbf\xe5\x9c\xba', 6),
('sm \xe5\x9b\xbd\xe9\x99\x85', 22), ('sm \xe5\x9b\xbd\xe9\x99\x85 \xe5\xb9\xbf\xe5\x9c\xba', 2)]

================= delete =====================

True

None

True

None

False

False

====== no item matches any prefix of given key ========

Traceback (most recent call last):

  File "./word_based_trie.py", line 225, in <module>

    print trie.longest_prefix_value('happy')

  File "./word_based_trie.py", line 128, in longest_prefix_value

    raise Exception("no item matches any prefix of the given key!")

Exception: no item matches any prefix of the given key!

支持中文的基于词为基本粒度的前缀树(prefix trie)python实现的更多相关文章

  1. 基于bert的命名实体识别,pytorch实现,支持中文/英文【源学计划】

    声明:为了帮助初学者快速入门和上手,开始源学计划,即通过源代码进行学习.该计划收取少量费用,提供有质量保证的源码,以及详细的使用说明. 第一个项目是基于bert的命名实体识别(name entity ...

  2. 基于myscript.js的web手写板(支持中文识别)

    网上的手写板模板不少,但是支持中文识别的却不多,而且基本上都收费的,毕竟别人的中文库凭什么免费提供给你(说好的开源呢?说好的开源呢? ←_←) 好了,进入主题,myscript.js,在官网其实我并没 ...

  3. Sphinx在windows下安装使用[支持中文全文检索]

    原文地址:http://www.fuchaoqun.com/2008/11/sphinx-on-windows-xp/ 前 一阵子尝试使用了一下Sphinx,一个能够被各种语言(PHP/Python/ ...

  4. jQuery.qrcode.js客户端生成二维码,支持中文并且可以生成LOGO

    描述: jquery.qrcode.js 是一个能够在客户端生成矩阵二维码QRCode 的jquery插件 ,使用它可以很方便的在页面上生成二维条码.此插件是能够独立使用的,体积也比较         ...

  5. flying-saucer + iText + Freemarker实现pdf的导出, 支持中文、css以及图片

    前言 项目中有个需求,需要将合同内容导出成pdf.上网查阅到了 iText , iText 是一个生成PDF文档的开源Java库,能够动态的从XML或者数据库生成PDF,同时还可以对文档进行加密,权限 ...

  6. PHP生成PDF完美支持中文,解决TCPDF乱码

    PHP生成PDF完美支持中文,解决TCPDF乱码 2011-09-26 09:04 418人阅读 评论(0) 收藏 举报 phpfontsheaderttfxhtml文档 PHP生成PDF完美支持中文 ...

  7. helm-mode打开文件支持中文搜索

    helm-mode打开文件支持中文搜索 */--> code {color: #FF0000} pre.src {background-color: #002b36; color: #83949 ...

  8. 构建支持中文字体的moviepy镜像

    首先是系统的环境问题. linux 安装 moviepy需要很多依赖,安装起来费神费力.配置起来也非常麻烦,最简单的办法是直接使用他人构建好的镜像文件. 再就是字体显示问题. 镜像中的imagmagi ...

  9. 支持中文!秒建 wiki 知识库的开源项目,构建私人知识网络

    不知道有没有人和我一样,觉得自建的东西是互联网上的"自留地".私人空间,有一种自己的一亩三分地随心所欲的痛快. 比如自建的博客想写什么随笔就写什么,不用取悦读者可以自娱自乐:再比如 ...

随机推荐

  1. AFN上传多张图片

    AFN上传多张图片代码: AFHTTPSessionManager *sessionManager = [AFHTTPSessionManager manager]; sessionManager.r ...

  2. mssql for VSCode Guide

    前言 mssql 出自微软自己的 Visual Studio Code 开源插件,代码托管于 GitHub 上. 不过需要注意的一点是,使用 insert into 语句新增的数据...中文是会乱码的 ...

  3. MySQL基础配置之mysql的默认字符编码的设置(my.ini设置字符编码)

    MySQL基础配置之mysql的默认字符编码的设置(my.ini设置字符编码) MySQL的默认编码是Latin1,不支持中文,那么如何修改MySQL的默认编码呢,下面以设置UTF-8为例来说明. 需 ...

  4. Nginx服务的地址重写

    调整Nginx服务器配置,实现: 1.所有访问a.html的请求,重定向到b.html; 2.所有访问Nginx服务器(192.168.4.1)的请求重定向至www.baidu.com: 3.所有访问 ...

  5. java HttpURLConnection 登录网站 完整代码

    import java.io.*; import java.util.*; import java.net.*; public class WebTest { public static void m ...

  6. 【转载】VMware完全卸载

    出现安装时出现vmwareworkstationxxx.msi failed问题是官方解决方案...真心详细. http://kb.vmware.com/selfservice/microsites/ ...

  7. PAT_A1116#Come on! Let's C

    Source: PAT A1116 Come on! Let's C (20 分) Description: "Let's C" is a popular and fun prog ...

  8. 【剑指Offer】31、从1到n整数中1出现的次数

      题目描述:   求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他 ...

  9. 大话数据结构pdf高清版下载

    大话数据结构PDF下载 不得不说严老师版的虽然比较经典,但是真的有点难理解啊,而大话数据结构这本书还是比较不错的,通俗易懂,反正我个人觉得很不错,希望对诸位有帮助. 链接:点击打开 密码:xovz p ...

  10. [cf 1015f] Bracket Substring (dp+kmp)

    传送门 Solution 设dp方程dp[now][pos][red][fla]表示还有now个位置,pos表示匹配到第几位,red表示左括号数-右括号数,fla表示是否已经是给定串的字串 暴力转移即 ...