A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers. 

Write a program to find and print the nth element in this sequence

Input

The input consists of one or more test cases. Each test case consists of one integer n with 1 <= n <= 5842. Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line saying "The nth humble number is number.". Depending on the value of n, the correct suffix "st", "nd", "rd", or "th" for the ordinal number nth has to be used like it is shown in the sample output.

Sample Input

1
2
3
4
11
12
13
21
22
23
100
1000
5842
0

Sample Output

The 1st humble number is 1.
The 2nd humble number is 2.
The 3rd humble number is 3.
The 4th humble number is 4.
The 11th humble number is 12.
The 12th humble number is 14.
The 13th humble number is 15.
The 21st humble number is 28.
The 22nd humble number is 30.
The 23rd humble number is 32.
The 100th humble number is 450.
The 1000th humble number is 385875.
The 5842nd humble number is 2000000000.

思路:可知这是一道动态规划的题,所以我们要去找出其状态方程,可知大小是逐渐增加的,其由无限个因子组成,刚开始时

都是一个因子,则选出一个因子组成的数的最小值,可知是2,然后下次必须有两个因子2,然后再拿两个2因子组成的数和其他一个因子组成的数比较,选出最小的数,状态方程为f[t]=min(2*f[i],3*f[j],5*f[k],7*f[l]);

#include <iostream>
#include <stdio.h>
using namespace std;
int f[5843],n;
int i,j,k,l; int min(int a,int b,int c,int d)
{
int min=a;
if(b<min) min=b;
if(c<min) min=c;
if(d<min) min=d; if(a==min) i++;
if(b==min) j++;
if(c==min) k++;
if(d==min) l++; return min;
} int main()
{
i=j=k=l=1;
f[1]=1;
for(int t=2;t<=5842;t++)
{
f[t]=min(2*f[i],3*f[j],5*f[k],7*f[l]);
}
while(scanf("%d",&n)&&n!=0)
{
if(n%10==1&&n%100!=11)
printf("The %dst humble number is %d.\n",n,f[n]);
else if(n%10==2&&n%100!=12)
printf("The %dnd humble number is %d.\n",n,f[n]);
else if(n%10==3&&n%100!=13)
printf("The %drd humble number is %d.\n",n,f[n]);
else
printf("The %dth humble number is %d.\n",n,f[n]);
} return 1;
}

HDU1058 - Humble Numbers的更多相关文章

  1. HDU1058 Humble Numbers 【数论】

    Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  2. DP 60题 -3 HDU1058 Humble Numbers DP求状态数的老祖宗题目

    Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  3. Humble Numbers(hdu1058)

    Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  4. [poj2247] Humble Numbers (DP水题)

    DP 水题 Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The se ...

  5. HDU - The number of divisors(约数) about Humble Numbers

    Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence ...

  6. A - Humble Numbers

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Pract ...

  7. The number of divisors(约数) about Humble Numbers[HDU1492]

    The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Lim ...

  8. Humble Numbers

    Humble Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9988 Accepted: 4665 Descri ...

  9. 洛谷P2723 丑数 Humble Numbers

    P2723 丑数 Humble Numbers 52通过 138提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目背景 对于一给定的素数 ...

随机推荐

  1. 0929MySQL JOIN的算法

    http://www.cnblogs.com/starhu/p/6418842.html http://www.cnblogs.com/starhu/p/6418833.html http://www ...

  2. 【MVC框架】——什么是MVC框架

    学习了经典三层之后,认为不论什么一种框架都不再是难的.不管如何,都须要连接数据库.业务逻辑处理.显示.其余的无非就是给三层解耦合.解耦合越到位,这个框架就越easy被接受. 百度百科:MVC全名是Mo ...

  3. How to run Java main class and pass application arguments in Maven?

    原文: http://www.logicbig.com/how-to/maven/mvn-java-exec-args/ --------------------------------------- ...

  4. HDU2955_Robberies【01背包】

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  5. BIEE11G Rpd合并

    Rpd合并 如图,合并两个rpd须要用三个rpd文件来操作.一个是blank.rpd.这是一个空白rpd,在biee合并的时候作为"原始主资料档案库":另一个是modified.R ...

  6. LeetCode OJ 之 Delete Node in a Linked List (删除链表中的结点)

    题目: Write a function to delete a node (except the tail) in a singly linked list, given only access t ...

  7. 最全三大框架整合(使用映射)——applicationContext.xml里面的配置

    applicationContext.xml: <?xml version="1.0" encoding="UTF-8"?> <beans x ...

  8. BZOJ 2929 网络流

    题意是啥--. 思路: 不是与1或n连起来的边 边权是1 否则是inf 跑网络流 //By SiriusRen #include <queue> #include <cstdio&g ...

  9. C++数字图像处理(1)-伽马变换

    https://blog.csdn.net/huqiang_823/article/details/80767019 1.算法原理    伽马变换(幂律变换)是常用的灰度变换,是一种简单的图像增强算法 ...

  10. elasticsear+kibana+logstash 优化

    ##关于s2安装cerebro来可视化集群管理##### https://blog.csdn.net/RWSLR6/article/details/79648767 https://github.co ...