题目链接:

https://jzoj.net/senior/#contest/show/2686/2

题目:

题解:

说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识

首先,若$1$号星与其他两颗星共线,那么显然新出现的 1 号星也必须在这条线上,因此可行的面积为 0 ,下文我们考虑 1 号星不与其他任意两颗星共线的情况

一个$O(n^2 log n)$的做法是枚举每一对星,$1$号星移动必然不能越过每一对星形成的直线,这样我们就可以通过半平面交解决这个问题

事实上,在这$O(n^2)$条直线中很多是冗余的,我们考虑只选出可能产生贡献的

1.考虑半平面$p_2-p_3,p_4-p_3,...,p_n-p_2$

2.令与星$p_i$极角相差不超过 $π$,且极角相差最大的星为 $p_j$ ,考虑半平面 $p_i−p_j$

然后运行半平面交即可

显然策略$1$是成立的,策略$2$画画图就很显然了

若$p_j$与$p_i$之间还有点$p_z$,那么显然$p_i-p_z$会被$p_i-p_j$遮挡掉,因为我们是要绕着原点的

特别需要注意的是我们每次添加直线要确保原点在所有直线左侧(或者在所有直线的右侧也可以,代码是左侧)

代码:

#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cstdio>
#define il inline
using namespace std;
typedef double db; const int N=1e6+;
const db pi=acos(-1.0);
const db eps=1e-;
int n,cnt;
il int dcmp(db x) {return fabs(x)<eps?:x<?-:;}
struct point
{
db x,y;db ang;
point (db _x=,db _y=):x(_x),y(_y) {ang=atan2(y,x);}
}p[N];
bool operator < (point a,point b) {return dcmp(a.ang-b.ang)<;}
point operator + (point a,point b) {return (point){a.x+b.x,a.y+b.y};}
point operator - (point a,point b) {return (point){a.x-b.x,a.y-b.y};}
point operator * (db t,point a) {return (point){a.x*t,a.y*t};}
db det(point a,point b) {return a.x*b.y-a.y*b.x;}
struct seg
{
int a,b;db ang;
seg(int _a=,int _b=):a(_a),b(_b) {ang=atan2(p[b].y-p[a].y,p[b].x-p[a].x);};
}l[N];
bool segleft(seg x,seg y)
{
point u=p[x.b]-p[x.a];
point v=p[y.b]-p[y.a];
db tp=det(u,v);
return (tp>)||((tp==)&&det(u,p[y.a]-p[x.a])>);
}
bool operator < (seg x,seg y)
{
db o=x.ang-y.ang;
if (!dcmp(o)) return segleft(y,x);
return dcmp(o)<;
}
inline int read()
{
char ch=getchar();int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
point inter(seg x,seg y)//x与y的交点
{
point u=p[x.b]-p[x.a];
point v=p[y.b]-p[y.a];
point w=p[x.a]-p[y.a];
db d=det(w,v)/det(v,u);
return p[x.a]+d*u;
}
bool pright(seg x,point y)//点y是不是在直线x的右侧
{
point a=p[x.b]-p[x.a];
point b=y-p[x.a];
return dcmp(det(a,b))<=;
}
void add(int x,int y)//确保原点在左侧
{
if (pright(seg(x,y),point(,))) l[++cnt]=seg(y,x);
else l[++cnt]=seg(x,y);
}
int qu[N];
point a[N];
void work()
{
sort(l+,l++cnt);
int he=,ta=;
qu[++ta]=;
for (int i=;i<=cnt;i++)
if (dcmp(l[i].ang-l[i-].ang))
{
while (he<ta&&pright(l[i],inter(l[qu[ta]],l[qu[ta-]]))) --ta;
while (he<ta&&pright(l[i],inter(l[qu[he]],l[qu[he+]]))) ++he;
qu[++ta]=i;
}
while (he<ta&&pright(l[qu[he]],inter(l[qu[ta]],l[qu[ta-]]))) --ta;
if (ta-he<=)
{
puts("0.000000000");
return;
}
int tp=;
qu[he-]=qu[ta];
for (int i=he;i<=ta;i++) a[++tp]=inter(l[qu[i]],l[qu[i-]]);
a[tp+]=a[];
db res=;
for (int i=;i<=tp;i++) res+=det(a[i],a[i+]);
printf("%.10lf\n",res*0.5);
}
int main()
{
freopen("everdream.in","r",stdin);
freopen("everdream.out","w",stdout);
int NUM=read(),T=read();
while (T--)
{
n=read()-;
p[].x=1.0*read();p[].y=1.0*read();
for (int i=;i<=n;i++) p[i].x=1.0*read()-p[].x,p[i].y=1.0*read()-p[].y,p[i].ang=atan2(p[i].y,p[i].x);
cnt=;
sort(p+,p++n);
for (int i=;i<=n;i++) p[n+i]=p[i],p[n+i].ang+=*pi;
bool flag=;
for (int i=;i<=n;i++)
{
if (!dcmp(p[i].ang-p[i+].ang)) {flag=;break;}
add(i,i%n+);
point ty=(point){,};ty.ang=p[i].ang+pi;
int t=lower_bound(p+,p++*n,ty)-p;
if (t!=i+n&&!dcmp(p[t].ang-p[i].ang-pi)) {flag=;break;}
--t;
if (i!=t&&i+n!=t) add(i,(t-)%n+);
}
if (flag) {puts("0.000000000");continue;}
p[n+]=(point){-1e6,-1e6};p[n+]=(point){1e6,-1e6};
p[n+]=(point){1e6,1e6};p[n+]=(point){-1e6,1e6};
p[n+]=p[n+]-p[];p[n+]=p[n+]-p[];
p[n+]=p[n+]-p[];p[n+]=p[n+]-p[];
add(n+,n+);add(n+,n+);
add(n+,n+);add(n+,n+);
work();
}
return ;
}

[jzoj 6093] [GDOI2019模拟2019.3.30] 星辰大海 解题报告 (半平面交)的更多相关文章

  1. [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)

    题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...

  2. [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)

    题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...

  3. [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)

    题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...

  4. [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)

    题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...

  5. [jzoj 4528] [GDOI2019模拟2019.3.26] 要换换名字 (最大权闭合子图)

    题目链接: https://jzoj.net/senior/#contest/show/2683/0 题目: 题解: 不妨枚举一个点,让两颗树都以这个点为根,求联通块要么点数为$0$,要么包括根(即联 ...

  6. [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)

    题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...

  7. [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)

    题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...

  8. [JZOJ 5893] [NOIP2018模拟10.4] 括号序列 解题报告 (Hash+栈+map)

    题目链接: https://jzoj.net/senior/#main/show/5893 题目: 题解: 考虑暴力怎么做,我们枚举左端点,维护一个栈,依次加入元素,与栈顶元素和栈内第二个元素相同时弹 ...

  9. [JZOJ 5885] [NOIP2018模拟9.27] 物理实验 解题报告 (思维)

    题目链接: https://jzoj.net/senior/#main/show/5885 题目: 题解: 把$a$数组按升序排序 我们可以枚举$x$,发现对于任意$x$,最优情况下$y$一定等于$x ...

随机推荐

  1. 免费获取Bootstrap模板的方法

    Bootstrap是Twitter推出的一个开源的用于前端开发的工具包,其中中包含了丰富的Web组件,根据这些组件,可以快速的搭建一个漂亮.功能完备的网站. 最近通过了Bootstrap中文网学习了其 ...

  2. 控件——DataGridview

    控件:DataGridview    用来显示数据,      可以显示和编辑来自多种不同类型的数据源的表格数据. 一.两种显示数据的方式:手动,后台代码 主要通过后台代码:先建立三大类   然后绑定 ...

  3. IE不支持 ES6 Promise 对象的解决方案

    * 引入bluebird.js即可完美解决. /*ie兼容 Promise*/ isIE(); function isIE() { //ie? if ( !! window.ActiveXObject ...

  4. parseint和isNaN用法

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  5. JavaScript实现延时提示框

    <html> <head> <meta charset="utf-8"> <title>无标题文档</title> &l ...

  6. (转)19 个 JavaScript 有用的简写技术

    1.三元操作符 当想写if...else语句时,使用三元操作符来代替. const x = 20; let answer; if (x > 10) { answer = 'is greater' ...

  7. javascript时间戳转换成yyyy-MM-DD格式

    最近开发中需要和后端进日期和时间传值,前后端约定为时间戳的格式,但是前端展示需要展示成年-月-日的格式.就需要进行日期和时间转换格式.自己总结两个方式就行转换. 一,new Date(时间戳).for ...

  8. Service、chkconfig命令

    转自:http://my.oschina.net/phptiger86/blog/137656

  9. PHP中的字符串类型

    PHP支持两种类型的字符串,这些字符串用引号说明. 1.如果希望赋值一个字面意义的字符串,精确保存这个字符串的内容,应该用单引号标注,例如: $info='You are my $sunshine'; ...

  10. CDR教程-海报中的立体星星怎么画

    在海报招贴.平面设计中有时需要凸显节日气氛,绘制一些立体星星图案作为陪衬.有人说cdr软件实现不了立体星星的制作,我想说,只有想不到,没有做不到.制作立体星星可通过cdr软件中的某些工具来实现,本案例 ...