四 numpy操作数组输出图片
一、读取一张图片,修改颜色通道后输出
# -*- coding=GBK -*-
import cv2 as cv
import numpy as np #numpy数组操作
def access_pixles(image):
print(image.shape)
height = image.shape[0]
width = image.shape[1]
channel = image.shape[2]
print("width : %s, height : %s, channel : %s" % (width, height, channel))
for row in range(height):
for col in range(width):
for c in range(channel):
pv = image[row, col, c]
image[row, col, c] = 255 - pv
cv.imshow("修改后", image) src = cv.imread("C://1.jpg")
#cv.namedWindow("原来", cv.WINDOW_NORMAL)
cv.imshow("原来", src)
t1 = cv.getTickCount()#毫秒级别的计时函数,记录了系统启动以来的时间毫秒
access_pixles(src)
t2 = cv.getTickCount()
time = (t2 - t1)*1000/cv.getTickFrequency()#getTickFrequency用于返回CPU的频率,就是每秒的计时周期数
print("time: %s" % time)#输出运行的时间
cv.waitKey(0)
cv.destroyAllWindows()
说明:
getTickCount()/getTickFrequency()
getTickCount():用于返回从操作系统启动到当前所经的计时周期数,看名字也很好理解,get Tick Count(s)。
getTickFrequency():用于返回CPU的频率。get Tick Frequency。这里的单位是秒,也就是一秒内重复的次数。
所以剩下的就很清晰了:
总次数/一秒内重复的次数 = 时间(s)
1000 *总次数/一秒内重复的次数= 时间(ms)
C++版的getTickFrequency返回的是每秒钟的tick数
C版的cvGetTickFrequency返回的是每微妙的tick数
这个逻辑很清晰,没什么问题,但是这里有一个小坑,那就是C版本的cvGetTickFrequency()函数和C++版本的getTickFrequency()的单位不一样,前者以ms计算频率,后者以s为单位计算频率,所以如果使用C版本的cvGetTickFrequency()计算时间的话,应该是:
总次数/(一us内重复的次数*1000) = 时间(ms)
总次数/(一us内重复的次数*1000000) = 时间(s)
二、自定义一张多通道图片
# -*- coding=GBK -*-
import cv2 as cv
import numpy as np def create_image():
img = np.zeros([400, 400, 3], np.uint8)#zeros:double类零矩阵 创建400*400 3个通道的矩阵图像 参数时classname为uint8
img[:, :, 0] = np.ones([400, 400])*255#ones([400, 400])是创建一个400*400的全1矩阵,*255即是全255矩阵 并将这个矩阵的值赋给img的第一维
img[:, :, 1] = np.ones([400, 400])*255#第二维全是255
img[:, :, 2] = np.ones([400, 400])*255#第三维全是255
cv.imshow("自制图片", img)#输出一张400*400的白色图片(255 255 255):蓝(B)、绿(G)、红(R) create_image()
cv.waitKey(0)
cv.destroyAllWindows()
运行结果是输出一张白色图片 也可修改255为其他数字来输出不同颜色的图片
也可单独使用ones函数,代码如下:
# -*- coding=GBK -*-
import cv2 as cv
import numpy as np def create_image():
img = np.ones([400, 400, 3], np.uint8)
img[:, :, 0] = img[:, :, 0]*255
img[:, :, 1] = img[:, :, 1]*255
img[:, :, 2] = img[:, :, 2]*255
cv.imshow("自制图片", img) create_image()
cv.waitKey(0)
cv.destroyAllWindows()
三、自定义一张单通道图片
# -*- coding=GBK -*-
import cv2 as cv
import numpy as np def create_image():
img = np.ones([400, 400, 1], np.uint8)
img = img * 127
cv.imshow("自制图片", img) create_image()
cv.waitKey(0)
cv.destroyAllWindows()
四、调用库函数来实现像素反转
# -*- coding=GBK -*-
import cv2 as cv
import numpy as np #像素取反
def inverse(image):
dst = cv.bitwise_not(image)
cv.imshow("取反", dst) src = cv.imread("C://1.jpg")
cv.namedWindow("原来", cv.WINDOW_NORMAL)
cv.imshow("原来", src)
t1 = cv.getTickCount()
inverse(src)
t2 = cv.getTickCount()
time = (t2 - t1)*1000/cv.getTickFrequency()
print("time: %s" % time)
cv.waitKey(0)
cv.destroyAllWindows()
说明:
bitwise_and是对二进制数据进行“与”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“与”操作,1&1=1,1&0=0,0&1=0,0&0=0
bitwise_or是对二进制数据进行“或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“或”操作,1|1=1,1|0=0,0|1=0,0|0=0
bitwise_xor是对二进制数据进行“异或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“异或”操作,1^1=0,1^0=1,0^1=1,0^0=0
bitwise_not是对二进制数据进行“非”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“非”操作,~1=0,~0=1
四 numpy操作数组输出图片的更多相关文章
- NumPy 学习 第四篇:数组的基本操作
在数组中,用axis(轴)表示维度,对于三维数组,axis参数的取值通常有: 当axis=None时,表示把数组展开为一维数组: 当axis=0时,表示按照行(第一维)进行计算: 当axis=1时,表 ...
- Numpy | 12 数组操作
Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 修改数组形状 翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 一.修改数组形状 函数 描述 reshape 不改变数据 ...
- 一、Numpy基础--数组
(一)Numpy数组对象 Numpy中的nadrray是一个多维数组对象,该对象由两部分组成: 实际的数据 描述这些数据的元数据 大部分的数组操作仅仅修改元数据部分,而不改变底层的实际数据. 数组的数 ...
- Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像
前文传送门: 「Python 图像处理 OpenCV (1):入门」 普通操作 1. 读取像素 读取像素可以通过行坐标和列坐标来进行访问,灰度图像直接返回灰度值,彩色图像则返回B.G.R三个分量. 需 ...
- 前端不为人知的一面--前端冷知识集锦 前端已经被玩儿坏了!像console.log()可以向控制台输出图片
前端已经被玩儿坏了!像console.log()可以向控制台输出图片等炫酷的玩意已经不是什么新闻了,像用||操作符给变量赋默认值也是人尽皆知的旧闻了,今天看到Quora上一个帖子,瞬间又GET了好多前 ...
- Java学习笔记十:Java的数组以及操作数组
Java的数组以及操作数组 一:什么是数组: 数组可以理解为是一个巨大的“盒子”,里面可以按顺序存放多个类型相同的数据,比如可以定义 int 型的数组 scores 存储 4 名学生的成绩 数组中的元 ...
- Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二 ...
- matplotlib数组转图片的一些坑
最近用matplotlib遇到了一些坑,记录一下. 图片转数组 import matplotlib.pyplot as plt im_file='test_image.jpg' img=plt.imr ...
- MVC控制下输出图片、javascript与json格式
/// <summary> /// 输出图片 /// </summary> /// <returns></returns> public ActionR ...
随机推荐
- 关于Tomcat的启动
1.Tomcat分为安装版和解压版. 2.在Tomcat的解压版的bin路径下启动startup.bat的时候,如果没有启动成功,请检查是否设置了JAVA_HOME 3.建议不要在环境变量里面设置CA ...
- 9.variant move function change_cast
包含的头文件 #include <iostream> #include <string> #include <boost/array.hpp> //异构的容器 #i ...
- vue,elementUI切换主题,自定义主题
本文介绍两种elementUI切换主题色的方法 项目示例:http://test.ofoyou.com/theme/ git代码:记得star哦,谢谢 1:官方提供的方法,直接修改scss文件达到修改 ...
- js实现数组的去重
function filterRepat(arr){ if(Array.isArray(arr) && arr.length){ var arr = arr.filter(functi ...
- tomcat更改日志路径
共有2个地方需要更改. 1. tomcat/conf/logging.properties 步骤1--查找:grep logs logging.properties 步骤2--替换:sed -i ...
- sql中对日期的筛选
#几个小时内的数据 DATE_SUB(NOW(), INTERVAL 5 HOUR) #今天 select * from 表名 where to_days(时间字段名) = to_days(now() ...
- form表单里的坑
我们在写前端表单页面的时候,为了更好的SEO,我们会使用form标签,但是我们经常的情况是:我们并不需要form标签的一些默认事件,比如: 1.form内只有一个input标签的话,回车会触发表单的提 ...
- EasyUI Combotree只选择叶子节点
EasyUI Combotree的方法拓展自Combo和Tree.而Tree有一个onBeforSelect事件来帮助我们实现只选择叶子节点的功能. Tree事件需要 'node' 参数,它包括下列属 ...
- Vue过渡与动画
通过 Vue.js 的过渡系统,可以在元素从 DOM 中插入或移除时自动应用过渡效果.Vue.js 会在适当的时机为你触发 CSS 过渡或动画,你也可以提供相应的 JavaScript 钩子函数在过渡 ...
- 关于buffer和cache的区别
1. Cache:缓存区,是高速缓存,是位于CPU和主内存之间的容量较小但速度很快的存储器,因为CPU的速度远远高于主内存的速度,CPU从内存中读取数据需等待很长的时间,而 Cache保存着CPU刚 ...