1069. The Black Hole of Numbers
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
#include<iostream>
#include<sstream>
#include<math.h>
#include<iomanip>
using namespace std;
void Insertion_sort(int a[],int N){
int i,j;
for(i=1;i<N;i++){
int temp=a[i];
for(j=i;j>0;j--)
if(a[j-1]>temp) swap(a[j-1],a[j]);
else break;
a[j]=temp;
}
}
int main(){
string s;
cin>>s;
s.insert(0,4-s.length(),'0');
int a[4];
int r=0;
while(r!=6174){
int m=0,n=0;
for(int i=0;i<4;i++)
a[i]=s[i]-'0';
Insertion_sort(a,4);
for(int i=0;i<4;i++){
m+=a[i]*pow(10,i);
n+=a[i]*pow(10,3-i);
}
r=m-n;
cout<<setw(4)<<setfill('0')<<m;
cout<<" - "; cout<<setw(4)<<setfill('0')<<n;
cout<<" = "; cout<<setw(4)<<setfill('0')<<r<<endl;
if(r==0) break;
ostringstream os;
os<<setw(4)<<setfill('0')<<r;
s=os.str();
}
return 0;
}
1069. The Black Hole of Numbers的更多相关文章
- PAT 1069 The Black Hole of Numbers
1069 The Black Hole of Numbers (20 分) For any 4-digit integer except the ones with all the digits ...
- PAT 1069 The Black Hole of Numbers[简单]
1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...
- 1069. The Black Hole of Numbers (20)【模拟】——PAT (Advanced Level) Practise
题目信息 1069. The Black Hole of Numbers (20) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B For any 4-digit inte ...
- pat 1069 The Black Hole of Numbers(20 分)
1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...
- PAT 甲级 1069 The Black Hole of Numbers (20 分)(内含别人string处理的精简代码)
1069 The Black Hole of Numbers (20 分) For any 4-digit integer except the ones with all the digits ...
- 1069 The Black Hole of Numbers (20分)
1069 The Black Hole of Numbers (20分) 1. 题目 2. 思路 把输入的数字作为字符串,调用排序算法,求最大最小 3. 注意点 输入的数字的范围是(0, 104), ...
- PAT 1069. The Black Hole of Numbers (20)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...
- 1069. The Black Hole of Numbers (20)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...
- 1069 The Black Hole of Numbers(20 分)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...
随机推荐
- 四大传值详解:属性传值,单例传值,代理传值,block传值
一:属性传值 传值情景:从前一个页面向后一个页面传值 a.在后一个页面,根据传值类型和个数,写属性 b.在前一个页面, 为属性赋值 c.在后一个页面, 使用值 例如: 第一个视图: #import & ...
- powerdesigner 16.5 视图的显示
今天中午为了解说绘图.然后把toolbox跟object brower都关掉了,花了1个小时才找到toolbox 1.object brower显示 直接使用快捷键 ALT+0 2.toolbox(也 ...
- TiDB(1): server測试安装
本文的原文连接是: http://blog.csdn.net/freewebsys/article/details/50600352 未经博主同意不得转载. 博主地址是:http://blog.csd ...
- 修改android系统开机动画
本文转载自:http://blog.csdn.net/u012301841/article/details/51598115 修改android系统开机动画
- P1155 双栈排序(二分图染色)
P1155 双栈排序(二分图染色) 题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一 ...
- bzoj1123 [POI2008]BLO——求割点子树相乘
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1123 思路倒是有的,不就是个乘法原理吗,可是不会写...代码能力... 写了一堆麻麻烦烦乱七 ...
- 查看服务器wwn是否在交换机侧
判断port_state是否为Online状态,是的话,读取出port_name,即为wwn. #!/usr/bin/env python3 # -*- coding: UTF-8 -*- impor ...
- [JavaEE] JBoss主要版本下载链接一览
URL: http://teddysun.com/260.html JBoss在2006年被 RedHat 收购.在各种 J2EE 应用服务器中,JBoss 是最受欢迎而且功能最为强大的应用服务器.不 ...
- selenium3 + python - gird分布式(转载)
本篇转自博客:上海-小T 转载链接:https://blog.csdn.net/real_tino/article/details/53467406 Selenium grid是用来分布式执行测试用例 ...
- DotnetCore安装介绍
微软的DotnetCore发布至今,已经有段时间了,我们都非常关注我们它能为我们带来什么,我们能通过它做什么?要解决这些问题,不仅仅需要基本的了解意外,还需要知道是开发环境是怎么搭建的,接下来我们就一 ...