1.常用Streaming命令介绍

使用下面的命令运行Streaming MapReduce程序:

   1:  $HADOOP_HOME/bin/hadoop/hadoop streaming args

其中args是streaming参数,下面是参数列表:

-input <path>

输入数据路径

-output <path>

输出数据路径

-mapper <cmd|JavaClassName>

mapper可执行程序或Java类

-reducer <cmd|JavaClassName>

reducer可执行程序或Java类

-file <file> Optional

分发本地文件

-cacheFile <file> Optional

分发HDFS文件

-cacheArchive <file> Optional

分发HDFS压缩文件

-numReduceTasks <num> Optional

reduce任务个数

-jobconf | -D NAME=VALUE Optional

作业配置参数

-combiner <JavaClassName> Optional

Combiner Java类

-partitioner <JavaClassName> Optional

Partitioner Java类

-inputformat <JavaClassName> Optional

InputFormat Java类

-outputformat <JavaClassName> Optional

OutputFormat Java类

-inputreader <spec> Optional

InputReader配置

-cmdenv <n>=<v> Optional

传给mapper和reducer的环境变量

-mapdebug <path> Optional

mapper失败时运行的debug程序

-reducedebug <path> Optional

reducer失败时运行的debug程序

-verbose Optional

详细输出模式

2.命令参数详解

下面是对各个参数的详细说明:

l -input <path>:指定作业输入,path可以是文件或者目录,可以使用*通配符,-input选项可以使用多次指定多个文件或目录作为输入。

l -output <path>:指定作业输出目录,path必须不存在,而且执行作业的用户必须有创建该目录的权限,-output只能使用一次。

l -mapper:指定mapper可执行程序或Java类,必须指定且唯一。

l -reducer:指定reducer可执行程序或Java类,必须指定且唯一。

l -file, -cacheFile, -cacheArchive:分别用于向计算节点分发本地文件、HDFS文件和HDFS压缩文件,具体使用方法参考文件分发与打包

l -numReduceTasks:指定reducer的个数,如果设置-numReduceTasks 0或者-reducer NONE则没有reducer程序,mapper的输出直接作为整个作业的输出。

l -jobconf | -D NAME=VALUE:指定作业参数,NAME是参数名,VALUE是参数值,可以指定的参数参考hadoop-default.xml。特别建议用-jobconf mapred.job.name='My Job Name'设置作业名,使用-jobconf mapred.job.priority=VERY_HIGH | HIGH | NORMAL | LOW | VERY_LOW设置作业优先级,使用-jobconf mapred.job.map.capacity=M设置同时最多运行M个map任务,使用-jobconf mapred.job.reduce.capacity=N设置同时最多运行N个reduce任务。常见的作业配置参数如下表所示:

mapred.job.name

作业名

mapred.job.priority

作业优先级

mapred.job.map.capacity

最多同时运行map任务数

mapred.job.reduce.capacity

最多同时运行reduce任务数

hadoop.job.ugi

作业执行权限

mapred.map.tasks

map任务个数

mapred.reduce.tasks

reduce任务个数

mapred.job.groups

作业可运行的计算节点分组

mapred.task.timeout

任务没有响应(输入输出)的最大时间

mapred.compress.map.output

map的输出是否压缩

mapred.map.output.compression.codec

map的输出压缩方式

mapred.output.compress

reduce的输出是否压缩

mapred.output.compression.codec

reduce的输出压缩方式

stream.map.output.field.separator

map输出分隔符

l -combiner:指定combiner Java类,对应的Java类文件打包成jar文件后用-file分发。

l -partitioner:指定partitioner Java类,Streaming提供了一些实用的partitioner实现,参考KeyBasedFiledPartitonerIntHashPartitioner

l -inputformat, -outputformat:指定inputformat和outputformat Java类,用于读取输入数据和写入输出数据,分别要实现InputFormat和OutputFormat接口。如果不指定,默认使用TextInputFormat和TextOutputFormat。

l -cmdenv NAME=VALUE:给mapper和reducer程序传递额外的环境变量,NAME是变量名,VALUE是变量值。

l -mapdebug, -reducedebug:分别指定mapper和reducer程序失败时运行的debug程序。

l -verbose:指定输出详细信息,例如分发哪些文件,实际作业配置参数值等,可以用于调试。

3.Streaming使用示例

   1:   # 删除原目录 由于streaming必须确保输出路径不存在
   2:   $hadoop fs -rmr "$outpath"
   3:    
   4:   # 执行统计
   5:   $hadoop streaming \
   6:       -input   "$inpath" \  # 文件输入路径
   7:       -output  "$outpath" \ # 结果输出路径
   8:      -mapper  "$map" \     # map阶段所用脚步
   9:       -reducer "$reduce" \  # reduce阶段所用脚本
  10:       -file    "$map" \     # 将客户端本地分拣分发到计算节点
  11:       -file    "$reduce" \  
  12:       -jobconf mapred.job.name="test_task" \ # 任务名称
  13:       -jobconf stream.num.map.output.key.fields=1 \  
  14:       -jobconf mapred.job.priority=HIGH \    # 作业优先级
  15:       -jobconf mapred.job.map.capacity=100 \ # 同时运行的map数
  16:       -jobconf mapred.job.reduce.capacity=10 \ # 同时运行的reduce数
  17:       -jobconf mapred.map.tasks=2000 \         # map的个数
  18:       -jobconf mapred.reduce.tasks=10          # reduce的格式
  19:       
  20:    exit $?

Hadoop Streaming框架学习(二)的更多相关文章

  1. Hadoop Streaming框架学习2

    Hadoop Streaming框架学习(二) 1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop ...

  2. Hadoop Streaming框架学习(一)

    Hadoop Streaming框架学习(一) Hadoop Streaming框架学习(一) 2013-08-19 12:32 by ATP_, 473 阅读, 3 评论, 收藏, 编辑 1.Had ...

  3. Struts2框架学习(二) Action

    Struts2框架学习(二) Action Struts2框架中的Action类是一个单独的javabean对象.不像Struts1中还要去继承HttpServlet,耦合度减小了. 1,流程 拦截器 ...

  4. Hadoop Streaming框架使用(二)

    上一篇文章介绍了Streaming的各种参数,本文具体介绍使用方法. 提交hadoop任务示例: $HADOOP_HOME/bin/hadoop streaming \ -input /user/te ...

  5. Hadoop Streaming框架使用(一)

      Streaming简介 link:http://www.cnblogs.com/luchen927/archive/2012/01/16/2323448.html Streaming框架允许任何程 ...

  6. Android 学习笔记之AndBase框架学习(二) 使用封装好的进度框,Toast框,弹出框,确认框...

    PS:渐渐明白,在实验室呆三年都不如在企业呆一年... 学习内容: 1.使用AbActivity内部封装的方法实现进度框,Toast框,弹出框,确认框...   AndBase中AbActivity封 ...

  7. WebGL------osg框架学习二

    今天我们继续来学习osg.js框架.上一篇我们介绍了DrawActor对象绘制操作类和Drawable可绘制对象类,我们大致知道了osg对Drawable可绘制对象的绘制流程管理.今天我们要继续介绍S ...

  8. Hibernate框架学习(二)——api详解

    一.Configuration对象 功能:配置加载类,用于加载主配置,orm元数据加载. //1.创建,调用空参构造(还没有读配置文件) Configuration conf=new Configur ...

  9. python flask框架学习(二)——第一个flask程序

    第一个flask程序 学习自:知了课堂Python Flask框架——全栈开发 1.用pycharm新建一个flask项目 2.运行程序 from flask import Flask # 创建一个F ...

随机推荐

  1. 三种方式使得iOS应用能够在后台进行数据更新和下载

    三种方式使得iOS程序即使在关闭或崩溃的情况下也能够在后台持续进行一些任务,比如更新程序界面快照,下载文件等.这三个方法分别是 Background Fetch,Remote Notification ...

  2. 解决离线Could not parse configuration:hibernate.cfg.xml错误

    离线使用hibernate tool 生成反向工程,在配置 配置文件完,生成配置文件后,会报出org.hibernate.HibernateException: Could not parse con ...

  3. erlang中如何调试程序

    学习一门语言,当学习那些基本语法的时候,我们常常会忽略它的程序调试,当程序稍微复杂一点的时候,我们不能保证程序的完全正确,我们会为其发愁,这时,程序的调试就变得相当重要了.    在erlang环境搭 ...

  4. CentOS7查看开放端口命令

    CentOS7查看开放端口命令   CentOS7的开放关闭查看端口都是用防火墙来控制的,具体命令如下: 查看已经开放的端口: /tcp --permanent 命令含义: –zone #作用域 –a ...

  5. SQLite的查询优化

    SQLite是个典型的嵌入式DBMS,它有很多优点,它是轻量级的,在编译之后很小,其中一个原因就是在查询优化方面比较简单,它只是运用索引机制来进行优化的,经过对SQLite的查询优化的分析以及对源代码 ...

  6. hdu4360 spfa+分割点

    标题要求必须按照L O V E 行走为了,你必须至少有一个完整的LOVE.说明可以通过同一个点反复 对每一个点拆分为4个点.分别为从L,O,V,E到达. 起始点看做是从E到达的 spfa时发现当前点距 ...

  7. 在asp.net core中使用cookie认证

    以admin控制器为要认证的控制器举例 1.对控制器设置权限特性 //a 认证命名空间 using Microsoft.AspNetCore.Authorization; using Microsof ...

  8. IOC学习1

    学习蒋金楠的 ASP.NET Core中的依赖注入(1):控制反转(IoC) 而来,这篇文章经典异常.一定要多读.反复读. 这篇文章举了一个例子,就是所谓的mvc框架,一开始介绍mvc的思想,由一个d ...

  9. Win32 Windows计划 十一年

    一个.使用位图 1 位图 - 由图像上的各点的颜色被保存,生成对应的位图文件 栅格 - 保存图像可以理解为晶格 矢量图 - 能够理解为画图命令的保存 2 位图的使用 2.1 载入位图 LoadBitm ...

  10. intel edison with grove lcd

    由intel xdk,例如,下面的过程能够打印Hello world至grove lcd上 var mraa = require ('mraa'); var LCD = require ('jsupm ...