Metric Learning度量学习:**矩阵学习和图学习
DML学习原文链接:http://blog.csdn.net/lzt1983/article/details/7884553
一篇metric learning(DML)的综述文章,对DML的意义、方法论和经典论文做一个介绍,同时对我的研究经历和思考做一个总结。可惜一直没有把握自己能够写好,因此拖到现在。
先列举一些DML的参考资源,以后有时间再详细谈谈。
1. Wikipedia
2. CMU的Liu Yang总结的关于DML的综述页面。对DML的经典算法进行了分类总结,其中她总结的论文非常有价值,也是我的入门读物。
3. ECCV 2010的turorial。
4. Weinberger的页面,上面有LMNN(Distance Metric Learning for Large Margin Nearest Neighbor Classification)的论文、sclides和代码。
5. ITML(Information Throretic Metric Learning)。ITML是DML的经典算法,获得了ICML 2007的best paper award。sclides。
顶级会议上矩阵学习的paper清单:http://blog.csdn.net/lzt1983/article/details/7831524
近2年顶级会议上度量学习相关的论文,数量之多,颇受震动。这其中怕是不乏灌水炒作新概念的文章,看来DML大有前几年sparse coding的势头啊。
Information-theoretic Semi-supervised Metric Learning via Entropy Regularization
A Hybrid Algorithm for Convex Semidefinite Optimization
Information-Theoretical Learning of Discriminative Clusters for Unsupervised Domain Adaptation
Similarity Learning for Provably Accurate Sparse Linear Classification
Learning Discriminative Fisher Kernels
Learning Multi-View Neighborhood Preserving Projections
Order Determination and Sparsity-Regularized Metric Learning for Adaptive Visual Tracking
Non-sparse Linear Representations for Visual Tracking with Online Reservoir Metric Learning
Unsupervised Metric Fusion by Cross Diffusion
Learning Hierarchical Similarity Metrics
Large Scale Metric Learning from Equivalence Constraints
Neighborhood Repulsed Metric Learning for Kinship Verification
Learning Robust and Discriminative Multi-Instance Distance for Cost Effective Video Classification
PCCA: a new approach for distance learning from sparse pairwise constraints
A Scalable Dual Approach to Semidefinite Metric Learning
AdaBoost
 on Low-Rank PSD Matrices for Metric Learning with Applications in Computer Aided Diagnosis
Adaptive Metric Differential Tracking (HUST)
Tracking Low Resolution Objects by Metric Preservation (HUST)
Optimal Semi-Supervised Metric Learning for Image Retrieval
Low Rank Metric Learning for Social Image Retrieval
Activity-Based Person Identification Using Sparse Coding and Discriminative Metric Learning
Deep Nonlinear Metric Learning with Independent Subspace Analysis for Face Verification
ACM MM 2011
Biased Metric Learning for Person-Independent Head Pose Estimation
Learning Mixtures of Sparse Distance Metrics for Classification and Dimensionality Reduction
Unsupervised Metric Learning for Face Identification in TV Video
Random Ensemble Metrics for Object Recognition
Learning Nonlinear Distance Functions using Neural Network for Regression with Application to Robust Human Age Estimation
Learning parameterized histogram kernels on the simplex manifold for image and action classification
Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost
Dual-force Metric Learning for Robust Distractor Resistant Tracker
Learning to Match Appearances by Correlations in a Covariance Metric Space
Image Annotation Using Metric Learning in Semantic Neighbourhoods
Measuring Image Distances via Embedding in a Semantic Manifold
Supervised Earth Mover’s Distance Learning and Its Computer Vision Applications
Learning Class-to-Image Distance via Large Margin and L1-norm Regularization
Labeling Images by Integrating Sparse Multiple Distance Learning and Semantic Context Modeling
Distance Metric Learning Under Covariate Shift
Learning a Distance Metric by Empirical Loss Minimization
Efficiently Learning a Distance Metric for Large Margin Nearest Neighbor Classification
Learning a Distance Metric from a Network
Learning a Tree of Metrics with Disjoint Visual Features
Metric Learning with Multiple Kernels
Random Forests for Metric Learning with Implicit Pairwise Position Dependence
WSDM 2011
Mining Social Images with Distance Metric Learning for Automated
 Image Tagging
Metric Learning度量学习:**矩阵学习和图学习的更多相关文章
- 关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))
		关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习 ... 
- Paddle Graph Learning (PGL)图学习之图游走类模型[系列四]
		Paddle Graph Learning (PGL)图学习之图游走类模型[系列四] 更多详情参考:Paddle Graph Learning 图学习之图游走类模型[系列四] https://aist ... 
- Reinforcement Learning,微信公众号:DRL学习
		欢迎大家关注微信公众号:DRL学习,我们一起来学习强化学习和深度强化学习的算法及现状应用问题. 强化学习简单说就是学习如何最大化未来奖励的预期总和,以及agent学会在环境中做出的行动序列,其中随机状 ... 
- 图学习【参考资料2】-知识补充与node2vec代码注解
		本项目参考: https://aistudio.baidu.com/aistudio/projectdetail/5012408?contributionType=1 *一.正题篇:DeepWalk. ... 
- 【转载】跟着9张思维导图学习JavaScript
		原文:跟着9张思维导图学习JavaScript 学习的道路就是要不断的总结归纳,好记性不如烂笔头,so,下面将 po 出我收集的 9 张 JavaScript相关的思维导图(非原创). 思维导图小ti ... 
- Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习
		http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ... 
- 用Spark学习矩阵分解推荐算法
		在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ... 
- Learning ROS for Robotics Programming Second Edition学习笔记(六) indigo xtion pro live
		中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ... 
- Learning ROS for Robotics Programming Second Edition学习笔记(五) indigo computer vision
		中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ... 
随机推荐
- BZOJ 1631 Usaco 2007 Feb. Cow Party
			[题解] 最短路裸题.. 本题要求出每个点到终点走最短路来回的距离,因此我们先跑一遍最短路得出每个点到终点的最短距离,然后把边反向再跑一遍最短路,两次结果之和即是答案. #include<cst ... 
- UVALIVE 6958 Indoorienteering
			题目大意:有不超过14个点组成的完全图,给出邻接矩阵,问是否存在长度为W的欧拉回路? 数据范围:n<=14, w<=1e15: standard input/output 7 s, 256 ... 
- poj  1679  判断最小生成树是否唯一
			/* 只需判断等效边和必选边的个数和n-1的关系即可 */ #include<stdio.h> #include<stdlib.h> #define N 110 struct ... 
- 网站配置https(腾讯云域名操作)
			我们都知道http协议是超文本传输协议,早期的网站使用的都是http,但是并不安全,数据在传输过程中容易被拦截篡改.所以后面有了https,也就是经过ssl加密的http协议.本文主要对网站配置htt ... 
- UVA 10905
			这题一开始比较错了.两字符串比较应该是 ab和ba两字符串连接起来比较,谁在前面大就排前面. #include <iostream> #include <cstdio> #in ... 
- Struts2—Action
			二.命名空间namespace ·命名空间namespace须要放在相应的package下 ·Namespace必须以"/开头". ·Result的name是"succe ... 
- Android 下使用opencv
			两种方式: 1.java API 2.Native/C++ 方式,OpenCV.mk中默认使用动态库的方式链接opencv,设置OPENCV_LIB_TYPE:=STATIC 以静态库方式调用 htt ... 
- oc59--匿名分类
			// // main.m // 匿名分类(延展) // 可以为某个类扩展私有的成员变量和方法,写在.m文件中, // 分类不可以扩展属性,分类有名字,匿名分类没有名字. #import <Fou ... 
- 一个简单的JS日期挂历脚本
			分享一个JS脚本做的日期挂历,在需要的时候可以引入你的程序. 如需单独引入这个脚本,请将它保存在一个文件中然后引入它:如这样 <script type="text/javascript ... 
- NYOJ skiing(DFS+记忆化搜索)
			skiing 时间限制:3000 ms | 内存限制: ... 
