Investment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 10090   Accepted: 3540

Description

John never knew he had a grand-uncle, until he received the notary's letter. He learned that his late grand-uncle had gathered a lot of money, somewhere in South-America, and that John was the only inheritor. 
John did not need that much money for the moment. But he realized that it would be a good idea to store this capital in a safe place, and have it grow until he decided to retire. The bank convinced him that a certain kind of bond was interesting for him. 
This kind of bond has a fixed value, and gives a fixed amount of yearly interest, payed to the owner at the end of each year. The bond has no fixed term. Bonds are available in different sizes. The larger ones usually give a better interest. Soon John realized that the optimal set of bonds to buy was not trivial to figure out. Moreover, after a few years his capital would have grown, and the schedule had to be re-evaluated. 
Assume the following bonds are available:

Value Annual
interest
4000
3000
400
250

With a capital of e10 000 one could buy two bonds of $4 000, giving a yearly interest of $800. Buying two bonds of $3 000, and one of $4 000 is a better idea, as it gives a yearly interest of $900. After two years the capital has grown to $11 800, and it makes sense to sell a $3 000 one and buy a $4 000 one, so the annual interest grows to $1 050. This is where this story grows unlikely: the bank does not charge for buying and selling bonds. Next year the total sum is $12 850, which allows for three times $4 000, giving a yearly interest of $1 200. 
Here is your problem: given an amount to begin with, a number of years, and a set of bonds with their values and interests, find out how big the amount may grow in the given period, using the best schedule for buying and selling bonds.

Input

The first line contains a single positive integer N which is the number of test cases. The test cases follow. 
The first line of a test case contains two positive integers: the amount to start with (at most $1 000 000), and the number of years the capital may grow (at most 40). 
The following line contains a single number: the number d (1 <= d <= 10) of available bonds. 
The next d lines each contain the description of a bond. The description of a bond consists of two positive integers: the value of the bond, and the yearly interest for that bond. The value of a bond is always a multiple of $1 000. The interest of a bond is never more than 10% of its value.

Output

For each test case, output – on a separate line – the capital at the end of the period, after an optimal schedule of buying and selling.

Sample Input

1
10000 4
2
4000 400
3000 250

Sample Output

14050

完全背包。压缩时的细节,比如类型转换,需要注意。
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<map>
using namespace std; struct Bond
{
int cost;
int inter;
} bond[];
int dp[]; int main()
{
int money;
int year,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&money,&year);
int d;
scanf("%d",&d);
for(int i=; i<d; i++)
{
scanf("%d%d",&bond[i].cost,&bond[i].inter);
bond[i].cost/=;
}
memset(dp,,sizeof(dp));
for(int i=;i<year;i++)
{
int tmp=money/;
for(int j=;j<d;j++)
for(int k=bond[j].cost;k<=tmp;k++)
dp[k]=max(dp[k],dp[k-bond[j].cost]+bond[j].inter);
money+=dp[tmp];
}
printf("%d\n",money);
}
return ;
}

POJ_2063_完全背包的更多相关文章

  1. 【USACO 3.1】Stamps (完全背包)

    题意:给你n种价值不同的邮票,最大的不超过10000元,一次最多贴k张,求1到多少都能被表示出来?n≤50,k≤200. 题解:dp[i]表示i元最少可以用几张邮票表示,那么对于价值a的邮票,可以推出 ...

  2. HDU 3535 AreYouBusy (混合背包)

    题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...

  3. HDU2159 二维完全背包

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  4. CF2.D 并查集+背包

    D. Arpa's weak amphitheater and Mehrdad's valuable Hoses time limit per test 1 second memory limit p ...

  5. UVALive 4870 Roller Coaster --01背包

    题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F ,     D -= K 问在D小于等于一定限度的时 ...

  6. 洛谷P1782 旅行商的背包[多重背包]

    题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能 ...

  7. POJ1717 Dominoes[背包DP]

    Dominoes Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6731   Accepted: 2234 Descript ...

  8. HDU3466 Proud Merchants[背包DP 条件限制]

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  9. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

随机推荐

  1. Android RecyclerViewSwipeDismiss:水平、垂直方向的拖曳删除item

     Android RecyclerViewSwipeDismiss:水平.垂直方向的拖曳删除item RecyclerViewSwipeDismiss是一种支持RecyclerView的水平.垂直 ...

  2. socket状态

    SYN_SEND Indicates active open. SYN_RECEIVED Server just received SYN from the client. ESTABLISHED C ...

  3. Java web如何定位工程路径

    一 项目路径的获得 System.getProperty("user.dir"); 可以获得当前用户的工作目录,即在哪个地方启动的java程序,返回就是当前目录 二 web项目根目 ...

  4. 大学,助你成长or 让你堕落?

    不管是论坛.贴吧.还是博客,都或多或少能够看到诸如对大学教育的反思.抨击之类的文章.至于什么是大学,大学又该怎样度过.大学是助你成长还是让你堕落了?我想这应该是一个见仁见智的问题.作为一个过来人,结合 ...

  5. Criteria——Hibernate的面向对象查询

    提到Hibernate的查询.我们往往会想到HQL,他使我们的SQL语句面向对象话. 事实上细看,差点儿相同就是把SQL语句中的表和字段用所相应的实体和属性给取代了.事实上.Hibernate中还有还 ...

  6. LeetCode OJ 之 Valid Anagram

    题目: Given two strings s and t, write a function to determine if t is an anagram of s. For example, s ...

  7. Hdu oj 1012 u Calculate e

    分析:注意格式. #include<stdio.h> int main() { int i,j,k; double sum=0; printf("n e\n- --------- ...

  8. Hadop使用Partitioner后,结果还是一个文件,怎样解决??

    近期看了一下partitioner.于是照着写了一个列子.最后发现程序并没有将结果分开写入对应的文件,结果还是一个文件,于是乎感觉是不是没实用集群去执行程序,发现control中还是本地执行的代码: ...

  9. hdu4430之枚举+二分

    Yukari's Birthday Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  10. OC3大回调模式使用总结(三)block回调

    OC 3大回调模式使用总结(三)block回调 block 又称 代码块,闭包等 是一个匿名的函数,它能够当做一个对象来使用,仅仅只是这个对象非常特殊,是一段代码,他能够保存你写的一段预备性质代码,待 ...