cogs 106. [NOIP2003] 加分二叉树(区间DP)
106. [NOIP2003] 加分二叉树
★☆ 输入文件:jfecs.in
输出文件:jfecs.out
简单对比
时间限制:1 s 内存限制:128 MB
【问题描述】
设 一个 n 个节点的二叉树 tree 的中序遍历为( l,2,3,…,n ),其中数字 1,2,3,…,n 为节点编号。每个节点都有一个分数(均为正整数),记第 j 个节点的分数为 di , tree 及它的每个子树都有一个加分,任一棵子树 subtree (也包含 tree 本身)的加分计算方法如下:
subtree 的左子树的加分 × subtree 的右子树的加分+ subtree 的根的分数若某个子树为空,规定其加分为 1 ,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为( 1,2,3,…,n )且加分最高的二叉树 tree 。要求输出;
( 1 ) tree 的最高加分
( 2 ) tree 的前序遍历
【输入格式】
第 1 行:一个整数 n ( n < 30 ),为节点个数。
第 2 行: n 个用空格隔开的整数,为每个节点的分数(分数< 100 )。
【输出格式】
第 1 行:一个整数,为最高加分(结果不会超过 4,000,000,000 )。
第 2 行: n 个用空格隔开的整数,为该树的前序遍历。
【输入样例】
5
5 7 1 2 10
【输出样例】
145
3 1 2 4 5
思路:区间DP,和那道石子合并有点类似。
f[i][j]记录区间i到j的最大值,root[i][j]记录此时的根是几。
那么状态转移方程就可以很轻易地求出来:f[i][j]=max(f[i][j],f[i][k-1]*f[k+1][j]+num[k]),顺便记录root[i][j]=k;
最后再跑一边先序遍历即可。
错因:数组初始化应该从0开始。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 31
using namespace std;
long long f[MAXN][MAXN];
int n,num[MAXN],root[MAXN][MAXN];
void dfs(int l,int r){
if(l>r) return ;
cout<<root[l][r]<<" ";
dfs(l,root[l][r]-);
dfs(root[l][r]+,r);
}
int main(){
freopen("jfecs.in","r",stdin);
freopen("jfecs.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[i][j]=;
for(int i=;i<=n;i++){
scanf("%d",&num[i]);
f[i][i]=num[i];
root[i][i]=i;
}
for(int i=n;i>=;i--)
for(int j=i+;j<=n;j++)
for(int k=i;k<=j;k++)
if(f[i][k-]*f[k+][j]+num[k]>f[i][j]){
root[i][j]=k;
f[i][j]=f[i][k-]*f[k+][j]+num[k];
}
cout<<f[][n]<<endl;
dfs(,n);
}
cogs 106. [NOIP2003] 加分二叉树(区间DP)的更多相关文章
- [Swust OJ 360]--加分二叉树(区间dp)
题目链接:http://acm.swust.edu.cn/problem/360/ Time limit(ms): 1000 Memory limit(kb): 65535 Description ...
- P1040 加分二叉树 区间dp
题目描述 设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第ii个节 ...
- 洛谷P1040 加分二叉树(区间dp)
P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...
- NOIP2003加分二叉树[树 区间DP]
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- NOIP-2003 加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- 【题解】NOI2009二叉查找树 + NOIP2003加分二叉树
自己的思维能力果然还是太不够……想到了这棵树所有的性质即中序遍历不变,却并没有想到怎样利用这一点.在想这道题的过程中走入了诸多的误区,在这里想记录一下 & 从中吸取到的教训(原该可以避免的吧) ...
- [luoguP1040] 加分二叉树(DP)
传送门 区间DP水题 代码 #include <cstdio> #include <iostream> #define N 41 #define max(x, y) ((x) ...
- NOIP2003 加分二叉树
http://www.luogu.org/problem/show?pid=1040 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号. ...
- NOIP2003加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,treedi,tree ...
随机推荐
- 第14章3节《MonkeyRunner源代码剖析》 HierarchyViewer实现原理-HierarchyViewer实例化
既然要使用HierarchyViewer来获取控件信息,那么首先我们看下在脚本中.我们是怎么获得HierarchyViewer的,看以下一段脚本代码: 1 device = MonkeyRunner. ...
- 国内物联网平台初探(三) ——QQ物联·智能硬件开放平台
平台定位 将QQ帐号体系.好友关系链.QQ消息通道及音视频服务等核心能力提供给可穿戴设备.智能家居.智能车载.传统硬件等领域的合作伙伴,实现用户与设备.设备与设备.设备与服务之间的联动. 实现用户与设 ...
- Python多线程学习(一、线程的使用)
Python中使用线程有两种方式:函数或者用类来包装线程对象. 1. 函数式:调用thread模块中的start_new_thread()函数来产生新线程.如下例: import thread de ...
- php打马赛克
本文实例讲述了php实现图片局部打马赛克的方法.分享给大家供大家参考.具体分析如下: 原理: 对图片中选定区域的每一像素,增加若干宽度及高度,生成矩型.而每一像素的矩型重叠在一起,就形成了马赛克效果. ...
- Hdu-6243 2017CCPC-Final A.Dogs and Cages 数学
题面 题意:问1~n的所有的排列组合中那些,所有数字 i 不在第 i 位的个数之和除以n的全排,即题目所说的期望,比如n=3 排列有123(0),132(2),231(3),213(2),312(3) ...
- java中 抽象类和抽象方法
在面向对象中,所有的对象都是由类来描绘的,但是并不是所有的类都用来描绘对象的,当一个类并不能包含完整的信息来描绘一个具体的对象时,我们把这个类称为抽象类.抽象类除了不完整的描述一个对象之外,其他的功能 ...
- 最详细的CentOS 6与7对比(三):性能测试对比
本主题将从3个角度进行对比 常见设置(CentOS 6 vs CentOS 7) 服务管理(Sysvinit vs Upstart vs Systemd) 性能测试(cpu/mem/io/oltp) ...
- JavaScript之BOM和DOM
前戏 到目前为止,我们已经学过了JavaScript的一些简单的语法.但是这些简单的语法,并没有和浏览器有任何交互. 也就是我们还不能制作一些我们经常看到的网页的一些交互,我们需要继续学习BOM和DO ...
- ACM_支离破碎(递推dp)
支离破碎 Time Limit: 4000/2000ms (Java/Others) Problem Description: 远古时期有一位魔王想向一座宫殿里的公主求婚.为了考验魔王的智力,太后给了 ...
- Three学习之曲线
曲线 属性 1. .arcLengthDivisions 当通过.getLengths计算曲线的累积段长度时,此值决定了分割的数量.为了确保在使用.getSpacedPoint等方法时的精度,如果曲线 ...