3.NumPy - 数组属性
1、ndarray.shape
这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小
# -*- coding: utf-8 -*- import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print a
print "Ndarray数组的维度为:"
print a.shape print "调整数组大小--a.shape = (3,2)"
a.shape = (3,2)
print a print "调整数组大小--a.reshape = (2,3)"
a.reshape(2,3)
print a
运行结果:
[[1 2 3]
[4 5 6]]
Ndarray数组的维度为:
(2L, 3L)
调整数组大小--a.shape = (3,2)
[[1 2]
[3 4]
[5 6]]
调整数组大小--a.reshape = (2,3)
[[1 2]
[3 4]
[5 6]]
2、ndarray.ndim:返回数组的维数
ndim:返回数组的维数
# -*- coding: utf-8 -*- import numpy as np
#等间隔数字的数组
a = np.arange(24)
print a #[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
print a.ndim #返回数组的维数:1
#现在调整其维数
b = a.reshape(2,4,3) #现在拥有三个维度:三维数组包含两个二维数组,每一个二维数组里面包含4x3的一维数组
print b
运行结果:
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
1
[[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]] [[12 13 14]
[15 16 17]
[18 19 20]
[21 22 23]]]
3、ndarray.itemsize
:返回数组中每个元素的字节单位长度
itemsize
:返回数组中每个元素的字节单位长度
# -*- coding: utf-8 -*- import numpy as np
#数组的 dtype 为 int8(一个字节)
x = np.array([1,2,3,4,5], dtype = np.int8)
print x #[1 2 3 4 5]
print x.itemsize #:
print '-----------------------'
#数组的 dtype 现在为 float32(四个字节)
x = np.array([1,2,3,4,5], dtype = np.float32)
print x.itemsize #
4:NumPy - 数组创建
4.1:numpy.empty
numpy.empty(shape, dtype = float, order = 'C') #它创建指定形状和dtype
的未初始化数组
构造器接受下列参数:
序号 | 参数及描述 |
---|---|
1. | Shape 空数组的形状,整数或整数元组 |
2. | Dtype 所需的输出数组类型,可选 |
3. | Order 'C' 为按行的 C 风格数组,'F' 为按列的 Fortran 风格数组 |
import numpy as np
x = np.empty([3,2], dtype = int)
print x
运行结果:注意:数组元素为随机值,因为它们未初始化
[[1577124050 0]
[1577157920 0]
[1668244575 2645855]]
4.2:numpy.zeros:
返回特定大小,以 0 填充的新数组。
numpy.zeros(shape, dtype = float, order = 'C')
构造器接受下列参数:
序号 | 参数及描述 |
---|---|
1. | Shape 空数组的形状,整数或整数元组 |
2. | Dtype 所需的输出数组类型,可选 |
3. | Order 'C' 为按行的 C 风格数组,'F' 为按列的 Fortran 风格数组 |
# -*- coding: utf-8 -*- import numpy as np
#含有 5 个 0 的数组,默认类型为 float
x = np.zeros(5)
print x x = np.zeros((5,), dtype = np.int)
print x #自定义类型
x = np.zeros((2,2), dtype = [('x', 'i4'), ('y', 'i4')])
print x
[0. 0. 0. 0. 0.]
[0 0 0 0 0]
[[(0, 0) (0, 0)]
[(0, 0) (0, 0)]]
4.3:numpy.ones
:
返回特定大小,以 1 填充的新数组
ones
:numpy.ones(shape, dtype = None, order = 'C')
构造器接受下列参数:
序号 | 参数及描述 |
---|---|
1. | Shape 空数组的形状,整数或整数元组 |
2. | Dtype 所需的输出数组类型,可选 |
3. | Order 'C' 为按行的 C 风格数组,'F' 为按列的 Fortran 风格数组 |
例 1
# 含有 5 个 1 的数组,默认类型为 float
import numpy as np
x = np.ones(5) print x
输出如下:
[ 1. 1. 1. 1. 1.]
例 2
import numpy as np
x = np.ones([2,2], dtype = int)
print x
输出如下:
[[1 1]
[1 1]]
3.NumPy - 数组属性的更多相关文章
- numpy数组属性查看及断言
numpy数组属性查看:类型.尺寸.形状.维度 import numpy as np a1 = np.array([1,2,3,4],dtype=np.complex128) print(a1) ...
- NumPy数组属性
NumPy - 数组属性 这一章中,我们会讨论 NumPy 的多种数组属性. ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小. 示例 1 import n ...
- Numpy 数组属性
Numpy 数组的维数称为秩(rank),一维数组的秩为 1 , 二维数组的秩为 2 , 以此类推:在Numpy中, 每一个线性的数组称为是一个轴(axis),也就是维度(dimensios).比如说 ...
- 3、NumPy 数组属性
1.秩.维度 NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 数组属性
NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(di ...
- Lesson4——NumPy 数组属性
NumPy 教程目录 NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axi ...
- NumPy 超详细教程(1):NumPy 数组
系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:n ...
- numpy常见属性、创建数组
1.几种常见numpy的属性 ndim:维度 shape:行数和列数 size:元素个数 >>> import numpy as np #导入numpy模块,np是为了使用方便的 ...
- Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二 ...
随机推荐
- Java泛型(5):擦除与补偿
先看一个例子: Class<?> c1 = new ArrayList<String>().getClass(); Class<?> c2 = new ArrayL ...
- xiaopiu产品原型设计与团队实时协作平台
PRD文档创作 全新的文档创作模式,让交互原型与产品文档完美结合: 四大专业模板,满足多场景使用,快速输出专业规范的文档 PRD文档搜索 更专业.更精准的PRD文档垂直搜索服务,包含功能流程.协议条款 ...
- .NET Core WebApi中返回 json 数据首字母大小写问题
public void ConfigureServices(IServiceCollection services) { services.AddMvc().AddJsonOptions(opt =& ...
- python 安装第三方模块的各种方法
whl包的安装:pip install **.whl(要有pip 和 下载好的whl文件) tar.gz包的安装:python setup.py install (先将tar.gz解压到指定文件夹,在 ...
- MQTT 简介及协议原理
MQTT(Message Queuing Telemetry Transport,消息队列遥测传输协议),是一种构建于TCP/IP协议上基于发布/订阅(publish/subscribe)模式的“轻量 ...
- MySQL中的聚集索引和辅助索引
MySQL中的聚集索引和辅助索引 当你定义一个主键时,innodb存储引擎就把他当做聚集索引 如果你没有定义一个主键,则innodb定位到第一个唯一索引,且改索引的所有列值均为非空,就将其当做聚集索引 ...
- Spring4学习回顾之路02—IOC&DI
IOC&DI介绍 ●IOC:(Inversion of Control) :控制反转(反向获取资源) 其思想是反转资源获取的方向.传统的资源上查找方式要求组件向容器发起请求查找资源,作为回应, ...
- MFC使用ado连接SQLserver
https://blog.csdn.net/GK_2014/article/details/50530103
- python-open函数操作实例
一.这个是源配置文件: global log 127.0.0.1 local2 daemon maxconn 256 log 12 ...
- 牛客 40E 珂朵莉的数论题
大意: 给定$x,y$, 求第$x$小的最小素因子为$y$的数, 若答案>1e9输出0. 若$y>=60$, 可以暴力筛出1e9/60以内的答案. 否则容斥+二分算出答案. #includ ...