spark调优篇-Spark ON Yarn 内存管理(汇总)
本文旨在解析 spark on Yarn 的内存管理,使得 spark 调优思路更加清晰
内存相关参数
spark 是基于内存的计算,spark 调优大部分是针对内存的,了解 spark 内存参数有也助于我们理解 spark 内存管理
- spark.driver.memory:默认 512M
- spark.executor.memory:默认 512M
- spark.yarn.am.memory:默认 512M
- spark.yarn.driver.memoryOverhead:driver memory * 0.10, with minimum of 384
- spark.yarn.executor.memoryOverhead:executor memory * 0.10, with minimum of 384
- spark.yarn.am.memoryOverhead:am memory * 0.10, with minimum of 384
- executor-cores:executor 相当于一个进程,cores 相当于该进程里的线程
内存解析
spark.xxx.memory / --xxx-memory 是 JVM 堆区域,但是 JVM 本身也会占用一定的堆空间,这部分由 spark.yarn.xxx.memoryOverhead 确定,二者关系如下图

内存分配
为了更好的利用 spark 内存,通常我们需要在 Yarn 集群中设置如下参数 【非必须】
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>106496</value> <!-- 104G -->
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>106496</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>2048</value>
</property>
- yarn.app.mapreduce.am.resource.mb:am 能申请的最大内存
- yarn.nodemanager.resource.memory-mb:nodemanager 能申请的最大内存
- yarn.scheduler.minimum-allocation-mb:任务调度时一个 container 可申请的最小内存
- yarn.scheduler.maximum-allocation-mb:任务调度时一个 container 可申请的最大内存
yarn.scheduler.minimum-allocation-mb 是 Container 的内存基本单位,也就是说 Container 的内存必须是 yarn.scheduler.minimum-allocation-mb 的整数倍,
比如 yarn.scheduler.minimum-allocation-mb 设置为 2G,2048M,
如果内存申请为 512M,512+384<2048M,会被分配 2G 内存,
如果内存申请为 3G,3072+384=3456M<4096M,会被分配 4G 内存,
如果申请内存为 6G,6144+614=6758<8192M,会被分配 8G 内存, 【max(6144*0.1, 384)=614】
所以当设定 --executor-memory 为 3G 时,Container 实际内存并非 3G
常见问题
常见的问题无非就是 内存不足 或者 container 被杀死
- Removing executor 5 with no recent heartbeats: 120504 ms exceeds timeout 120000 ms
- Container killed by YARN for exceeding memory limits
- Consider boosting spark.yarn.executor.memoryOverhead
- spark-OutOfMemory:GC overhead limit exceeded
常规思路
1. 第一解决办法就是增加总内存 【此法不能解决所有问题】
2. 其次考虑数据倾斜问题,因为数据倾斜导致某个 task 内存不足,其它 task 内存足够
// 最简单的方法是 repartition 【此法不能解决所有问题】
3. 考虑增加每个 task 的可用内存
// 减少 Executor 数
// 减少 executor-cores 数
参数设置注意事项
executor-memory
1. 设置过大,会导致 GC 过程很长,64G 是推荐的 内存上限 【根据硬件不同,可寻找合适的上限】
2. 设置过小,会导致 GC 频繁,影响效率
executor-cores
1. 设置过大,并行度会很高,容易导致 网络带宽占满,特别是从 HDFS 读取数据,或者是 collect 数据回传 Driver
2. 设置过大,使得多个 core 之间争夺 GC 时间以及资源,导致大部分时间花在 GC 上
参考资料:
https://www.cnblogs.com/saratearing/p/5813403.html#top
https://blog.csdn.net/pearl8899/article/details/80368018
https://www.so.com/s?q=with+minimum+of+384&src=se_zoned
https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/ 英文博客
spark调优篇-Spark ON Yarn 内存管理(汇总)的更多相关文章
- spark调优篇-spark on yarn web UI
spark on yarn 的执行过程在 yarn RM 上无法直接查看,即 http://192.168.10.10:8088,这对于调试程序很不方便,所以需要手动配置 配置方法 1. 配置 spa ...
- 【翻译】Spark 调优 (Tuning Spark) 中文版
由于Spark自己的调优guidance已经覆盖了很多很有价值的点,因此这里直接翻译一份过来.也作为一个积累. Spark 调优 (Tuning Spark) 由于大多数Spark计算任务是在内存中运 ...
- spark调优篇-oom 优化(汇总)
spark 之所以需要调优,一是代码执行效率低,二是经常 OOM 内存溢出 内存溢出无非两点: 1. Driver 内存不够 2. Executor 内存不够 Driver 内存不够无非两点: 1. ...
- Android性能调优篇之探索JVM内存分配
开篇废话 今天我们一起来学习JVM的内存分配,主要目的是为我们Android内存优化打下基础. 一直在想以什么样的方式来呈现这个知识点才能让我们易于理解,最终决定使用方法为:图解+源代码分析. 欢迎访 ...
- spark调优篇-数据倾斜(汇总)
数据倾斜 为什么会数据倾斜 spark 中的数据倾斜并不是说原始数据存在倾斜,原始数据都是一个一个的 block,大小都一样,不存在数据倾斜: 而是指 shuffle 过程中产生的数据倾斜,由于不同的 ...
- Android性能调优篇之探索垃圾回收机制
开篇废话 如果我们想要进行内存优化的工作,还是需要了解一下,但这一块的知识属于纯理论的,有可能看起来会有点枯燥,我尽量把这一篇的内容按照一定的逻辑来走一遍.首先,我们为什么要学习垃圾回收的机制,我大概 ...
- 【Spark篇】---Spark调优之代码调优,数据本地化调优,内存调优,SparkShuffle调优,Executor的堆外内存调优
一.前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存. 二.具体 1.代码调优 1.避免创建重复的RDD,尽 ...
- (转)Spark性能优化:资源调优篇
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何 ...
- 【转载】 Spark性能优化:资源调优篇
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...
随机推荐
- eclipse将web项目部署到tomcat
在 eclipse 中,选择 Window--->Preferences--->Server--->Runtime Environments,选择 Add 按钮 在弹出的对话框中,选 ...
- XXE外部实体注入漏洞——PHP
前言 XXE Injection即XML External Entity Injection,也就是XML外部实体注入攻击.漏洞是在对非安全的外部实体数据进行处理时引发的安全问题. 在XML1.0标准 ...
- SQL Server Management Studio 清除用户名和密码
SQL Server Management Studio 2018 delete the file C:\Users\%username%\AppData\Roaming\Microsoft\SQL ...
- Flask-login 原理
1 login_required 内部原理,主要是判断当前用户是否已经授权访问,如果没被授权就调用current_app.login_manager.unauthorized() current_us ...
- gdb常用的调试命令
首先将源代码编译.链接生成debug版本的可执行文件,然后通过‘gdb debug版本的可执行文件名’进入调试模式. a) 单进程.单线程基础调试命令 l 显示main函数所在的文件的源代码 ...
- 一个简单的puppeteer爬虫
const puppeteer = require("puppeteer"); const path = require('path'); const pathToExtensio ...
- Linux 文件存在程序找不到文件
1. 编码格式 程序运行时的编码格式和传输到程序中参数的编码格式是否一致,可以在程序中打印日志进行验证: 2. 转义符 文件路径中存在转义符 3. 运行程序的用户身份 不同用户运行程序也可能导致编码格 ...
- 运维自动化之ansible
Ansible简介 Ansible是一个简单的自动化运维管理工具,基于Python语言实现,由Paramiko和PyYAML两个关键模块构建,可用于自动化部署应用.配置.编排task(持续交付.无宕机 ...
- matplotlib画图报错This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
之前用以下代码将实验结果用matplotlib show出来 plt.plot(np.arange(len(aver_reward_list)), aver_reward_list) plt.ylab ...
- 五子棋AI教程
https://github.com/Chuck-Ai/gobang 我写了非常详细的中文教程,教你如何一步步编写自己的五子棋AI: 五子棋AI设计教程第二版一:前言 五子棋AI设计教程第二版二:博弈 ...