本文旨在解析 spark on Yarn 的内存管理,使得 spark 调优思路更加清晰

内存相关参数

spark 是基于内存的计算,spark 调优大部分是针对内存的,了解 spark 内存参数有也助于我们理解 spark 内存管理

  • spark.driver.memory:默认 512M
  • spark.executor.memory:默认 512M
  • spark.yarn.am.memory:默认 512M
  • spark.yarn.driver.memoryOverhead:driver memory * 0.10, with minimum of 384
  • spark.yarn.executor.memoryOverhead:executor memory * 0.10, with minimum of 384
  • spark.yarn.am.memoryOverhead:am memory * 0.10, with minimum of 384
  • executor-cores:executor 相当于一个进程,cores 相当于该进程里的线程

内存解析

spark.xxx.memory / --xxx-memory 是 JVM 堆区域,但是 JVM 本身也会占用一定的堆空间,这部分由 spark.yarn.xxx.memoryOverhead 确定,二者关系如下图

内存分配

为了更好的利用 spark 内存,通常我们需要在 Yarn 集群中设置如下参数  【非必须】

<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>106496</value> <!-- 104G -->
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>106496</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>2048</value>
</property>
  • yarn.app.mapreduce.am.resource.mb:am 能申请的最大内存
  • yarn.nodemanager.resource.memory-mb:nodemanager 能申请的最大内存
  • yarn.scheduler.minimum-allocation-mb:任务调度时一个 container 可申请的最小内存
  • yarn.scheduler.maximum-allocation-mb:任务调度时一个 container 可申请的最大内存

yarn.scheduler.minimum-allocation-mb 是 Container 的内存基本单位,也就是说 Container 的内存必须是 yarn.scheduler.minimum-allocation-mb 的整数倍,

比如 yarn.scheduler.minimum-allocation-mb 设置为 2G,2048M,

如果内存申请为 512M,512+384<2048M,会被分配 2G 内存,

如果内存申请为 3G,3072+384=3456M<4096M,会被分配 4G 内存,

如果申请内存为 6G,6144+614=6758<8192M,会被分配 8G 内存,          【max(6144*0.1, 384)=614】

所以当设定 --executor-memory 为 3G 时,Container 实际内存并非 3G

常见问题

常见的问题无非就是 内存不足 或者 container 被杀死

常规思路

1. 第一解决办法就是增加总内存    【此法不能解决所有问题】

2. 其次考虑数据倾斜问题,因为数据倾斜导致某个 task 内存不足,其它 task 内存足够

  // 最简单的方法是 repartition    【此法不能解决所有问题】

3. 考虑增加每个 task 的可用内存

  // 减少 Executor 数

  // 减少 executor-cores 数

参数设置注意事项

executor-memory

1. 设置过大,会导致 GC 过程很长,64G 是推荐的 内存上限  【根据硬件不同,可寻找合适的上限】

2. 设置过小,会导致 GC 频繁,影响效率

executor-cores

1. 设置过大,并行度会很高,容易导致 网络带宽占满,特别是从 HDFS 读取数据,或者是 collect 数据回传 Driver

2. 设置过大,使得多个 core 之间争夺 GC 时间以及资源,导致大部分时间花在 GC 上

参考资料:

https://www.cnblogs.com/saratearing/p/5813403.html#top

https://blog.csdn.net/pearl8899/article/details/80368018

https://www.so.com/s?q=with+minimum+of+384&src=se_zoned

https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/  英文博客

spark调优篇-Spark ON Yarn 内存管理(汇总)的更多相关文章

  1. spark调优篇-spark on yarn web UI

    spark on yarn 的执行过程在 yarn RM 上无法直接查看,即 http://192.168.10.10:8088,这对于调试程序很不方便,所以需要手动配置 配置方法 1. 配置 spa ...

  2. 【翻译】Spark 调优 (Tuning Spark) 中文版

    由于Spark自己的调优guidance已经覆盖了很多很有价值的点,因此这里直接翻译一份过来.也作为一个积累. Spark 调优 (Tuning Spark) 由于大多数Spark计算任务是在内存中运 ...

  3. spark调优篇-oom 优化(汇总)

    spark 之所以需要调优,一是代码执行效率低,二是经常 OOM 内存溢出 内存溢出无非两点: 1. Driver 内存不够 2. Executor 内存不够 Driver 内存不够无非两点: 1. ...

  4. Android性能调优篇之探索JVM内存分配

    开篇废话 今天我们一起来学习JVM的内存分配,主要目的是为我们Android内存优化打下基础. 一直在想以什么样的方式来呈现这个知识点才能让我们易于理解,最终决定使用方法为:图解+源代码分析. 欢迎访 ...

  5. spark调优篇-数据倾斜(汇总)

    数据倾斜 为什么会数据倾斜 spark 中的数据倾斜并不是说原始数据存在倾斜,原始数据都是一个一个的 block,大小都一样,不存在数据倾斜: 而是指 shuffle 过程中产生的数据倾斜,由于不同的 ...

  6. Android性能调优篇之探索垃圾回收机制

    开篇废话 如果我们想要进行内存优化的工作,还是需要了解一下,但这一块的知识属于纯理论的,有可能看起来会有点枯燥,我尽量把这一篇的内容按照一定的逻辑来走一遍.首先,我们为什么要学习垃圾回收的机制,我大概 ...

  7. 【Spark篇】---Spark调优之代码调优,数据本地化调优,内存调优,SparkShuffle调优,Executor的堆外内存调优

    一.前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存. 二.具体    1.代码调优 1.避免创建重复的RDD,尽 ...

  8. (转)Spark性能优化:资源调优篇

      在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何 ...

  9. 【转载】 Spark性能优化:资源调优篇

    在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...

随机推荐

  1. eclipse将web项目部署到tomcat

    在 eclipse 中,选择 Window--->Preferences--->Server--->Runtime Environments,选择 Add 按钮 在弹出的对话框中,选 ...

  2. XXE外部实体注入漏洞——PHP

    前言 XXE Injection即XML External Entity Injection,也就是XML外部实体注入攻击.漏洞是在对非安全的外部实体数据进行处理时引发的安全问题. 在XML1.0标准 ...

  3. SQL Server Management Studio 清除用户名和密码

    SQL Server Management Studio 2018 delete the file C:\Users\%username%\AppData\Roaming\Microsoft\SQL  ...

  4. Flask-login 原理

    1 login_required 内部原理,主要是判断当前用户是否已经授权访问,如果没被授权就调用current_app.login_manager.unauthorized() current_us ...

  5. gdb常用的调试命令

    首先将源代码编译.链接生成debug版本的可执行文件,然后通过‘gdb  debug版本的可执行文件名’进入调试模式. a) 单进程.单线程基础调试命令 l    显示main函数所在的文件的源代码 ...

  6. 一个简单的puppeteer爬虫

    const puppeteer = require("puppeteer"); const path = require('path'); const pathToExtensio ...

  7. Linux 文件存在程序找不到文件

    1. 编码格式 程序运行时的编码格式和传输到程序中参数的编码格式是否一致,可以在程序中打印日志进行验证: 2. 转义符 文件路径中存在转义符 3. 运行程序的用户身份 不同用户运行程序也可能导致编码格 ...

  8. 运维自动化之ansible

    Ansible简介 Ansible是一个简单的自动化运维管理工具,基于Python语言实现,由Paramiko和PyYAML两个关键模块构建,可用于自动化部署应用.配置.编排task(持续交付.无宕机 ...

  9. matplotlib画图报错This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.

    之前用以下代码将实验结果用matplotlib show出来 plt.plot(np.arange(len(aver_reward_list)), aver_reward_list) plt.ylab ...

  10. 五子棋AI教程

    https://github.com/Chuck-Ai/gobang 我写了非常详细的中文教程,教你如何一步步编写自己的五子棋AI: 五子棋AI设计教程第二版一:前言 五子棋AI设计教程第二版二:博弈 ...