1、知识点

"""
单机多卡:一台服务器上多台设备(GPU)
参数服务器:更新参数,保存参数
工作服务器:主要功能是去计算 更新参数的模式:
1、同步模型更新
2、异步模型更新
工作服务器会默认一个机器作为老大,创建会话 tensorflow设备命名规则:
/job:ps/task:0 job:ps,服务器类型 task:0,服务器第几台 /job:worker/task:0/cpu:0
/job:worker/task:0/gpu:0
/job:worker/task:0/gpu:1 设备使用:
1、对集群当中的一些ps,worker进行指定
2、创建对应的服务, ps:创建ps服务 join()
worker创建worker服务,运行模型,程序,初始化会话等等
指定一个默认的worker去做
3、worker使用设备:
with tf.device("/job:worker/task:0/gup:0"):
计算操作
4、分布式使用设备:
tf.train.replica_device_setter(worker_device=worker_device,cluster=cluster)
作用:通过此函数协调不同设备上的初始化操作
worker_device:为指定设备, “/job:worker/task:0/cpu:0” or "/job:worker/task:0/gpu:0"
cluster:集群描述对象
API:
1、分布式会话函数:MonitoredTrainingSession(master="",is_chief=True,checkpoint_dir=None,   
hooks=None,save_checkpoint_secs=600,save_summaries_steps=USE_DEFAULT,save_summaries_secs=USE_DEFAULT,config=None)
参数:
master:指定运行会话协议IP和端口(用于分布式) "grpc://192.168.0.1:2000"
is_chief:是否为主worker(用于分布式)如果True,它将负责初始化和恢复基础的TensorFlow会话。
如果False,它将等待一位负责人初始化或恢复TensorFlow会话。
checkpoint_dir:检查点文件目录,同时也是events目录
config:会话运行的配置项, tf.ConfigProto(log_device_placement=True)
hooks:可选SessionRunHook对象列表
should_stop():是否异常停止
run():跟session一样可以运行op
2、tf.train.SessionRunHook
Hook to extend calls to MonitoredSession.run()
1、begin():在会话之前,做初始化工作
2、before_run(run_context)在每次调用run()之前调用,以添加run()中的参数。
ARGS:
run_context:一个SessionRunContext对象,包含会话运行信息
return:一个SessionRunArgs对象,例如:tf.train.SessionRunArgs(loss)
3、after_run(run_context,run_values)在每次调用run()后调用,一般用于运行之后的结果处理
该run_values参数包含所请求的操作/张量的结果 before_run()。
该run_context参数是相同的一个发送到before_run呼叫。
 ARGS:
run_context:一个SessionRunContext对象
run_values一个SessionRunValues对象, run_values.results
注:再添加钩子类的时候,继承SessionRunHook
3、tf.train.StopAtStepHook(last_step=5000)指定执行的训练轮数也就是max_step,超过了就会抛出异常
tf.train.NanTensorHook(loss)判断指定Tensor是否为NaN,为NaN则结束
注:在使用钩子的时候需要定义一个全局步数:global_step = tf.contrib.framework.get_or_create_global_step()
"""

2、代码

import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string("job_name", " ", "启动服务的类型ps or  worker")
tf.app.flags.DEFINE_integer("task_index", 0, "指定ps或者worker当中的那一台服务器以task:0 ,task:1") def main(argv): # 定义全集计数的op ,给钩子列表当中的训练步数使用
global_step = tf.contrib.framework.get_or_create_global_step() # 1、指定集群描述对象, ps , worker
cluster = tf.train.ClusterSpec({"ps": ["10.211.55.3:2223"], "worker": ["192.168.65.44:2222"]}) # 2、创建不同的服务, ps, worker
server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) # 根据不同服务做不同的事情 ps:去更新保存参数 worker:指定设备去运行模型计算
if FLAGS.job_name == "ps":
# 参数服务器什么都不用干,是需要等待worker传递参数
server.join()
else:
worker_device = "/job:worker/task:0/cpu:0/" # 3、可以指定设备取运行
with tf.device(tf.train.replica_device_setter(
worker_device=worker_device,
cluster=cluster
)):
# 简单做一个矩阵乘法运算
x = tf.Variable([[1, 2, 3, 4]])
w = tf.Variable([[2], [2], [2], [2]]) mat = tf.matmul(x, w) # 4、创建分布式会话
with tf.train.MonitoredTrainingSession(
master= "grpc://192.168.65.44:2222", # 指定主worker
is_chief= (FLAGS.task_index == 0),# 判断是否是主worker
config=tf.ConfigProto(log_device_placement=True),# 打印设备信息
hooks=[tf.train.StopAtStepHook(last_step=200)]
) as mon_sess:
while not mon_sess.should_stop():
print(mon_sess.run(mat)) if __name__ == "__main__":
tf.app.run()

3、分布式架构图

tensorflow分布式运行的更多相关文章

  1. [源码解析] TensorFlow 分布式环境(1) --- 总体架构

    [源码解析] TensorFlow 分布式环境(1) --- 总体架构 目录 [源码解析] TensorFlow 分布式环境(1) --- 总体架构 1. 总体架构 1.1 集群角度 1.1.1 概念 ...

  2. [源码解析] TensorFlow 分布式环境(5) --- Session

    [源码解析] TensorFlow 分布式环境(5) --- Session 目录 [源码解析] TensorFlow 分布式环境(5) --- Session 1. 概述 1.1 Session 分 ...

  3. TensorFlow分布式在Amazon AWS上运行

    TensorFlow分布式在Amazon AWS上运行 Amazon AWS 提供采用 NVIDIA K8 GPU 的 P2.x 机器.为了能够使用,第一步还需要创建一个 Amazon AWS 账户, ...

  4. TensorFlow分布式(多GPU和多服务器)详解

    本文介绍有关 TensorFlow 分布式的两个实际用例,分别是数据并行(将数据分布到多个 GPU 上)和多服务器分配. 玩转分布式TensorFlow:多个GPU和一个CPU展示一个数据并行的例子, ...

  5. [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems"

    [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed ...

  6. [翻译] TensorFlow 分布式之论文篇 "Implementation of Control Flow in TensorFlow"

    [翻译] TensorFlow 分布式之论文篇 "Implementation of Control Flow in TensorFlow" 目录 [翻译] TensorFlow ...

  7. [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑

    [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 目录 [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 1. 总述 2. 接口 2.1 ...

  8. [源码解析] TensorFlow 分布式环境(3)--- Worker 静态逻辑

    [源码解析] TensorFlow 分布式环境(3)--- Worker 静态逻辑 目录 [源码解析] TensorFlow 分布式环境(3)--- Worker 静态逻辑 1. 继承关系 1.1 角 ...

  9. [源码解析] TensorFlow 分布式环境(4) --- WorkerCache

    [源码解析] TensorFlow 分布式环境(4) --- WorkerCache 目录 [源码解析] TensorFlow 分布式环境(4) --- WorkerCache 1. WorkerCa ...

随机推荐

  1. javascript 元编程之 method_missing

    javascript 元编程之 method_missing 引言 要说元编程 ruby 中技巧太多了,今天来写的这个技术也来自于 ruby 中的灵感. method_missing 这个在 ruby ...

  2. Oracle【多表查询操作(SQL92&SQL99)】

    多表联合查询:需要获取的数据分布在多张表中 SQL92: --笛卡尔积:将多个表的数据进行一一对应,所得的结果为多表的笛卡尔积 select * from emp; select * from dep ...

  3. zabbix 监控TCP状态连接数

    1.zabbix客户端,监控TCP状态脚本,并保存到的定路径.(/usr/local/zabbix-agent/shells) # cat zabbix_linux_plugin.sh #!/bin/ ...

  4. RHEL6使用系统自带多路径软件配置多路径

    1.多路径的主要功能 多路径一般配合存储设备实现如下功能: 故障的切换和恢复  IO流量的负载均衡  磁盘的虚拟化     2.查看系统自带的多路径软件是否安装 [root@cluster01 ~]# ...

  5. LNMP安装与配置之MySQL

    MySQL 是最流行的关系型数据库管理系统之一,今天的安装是在CentOS7环境下进行安装,安装的版本是MySQL5.7,有需要别的版本可点击  官网. 一.安装 1.配置YUM源 # 下载mysql ...

  6. zencart新增分类点击不进去的解决办法

    zencart批量表新增分类点击不进去的原因是安装了管理员权限分级模块,只要运行以下语句即可. INSERT INTO `admin_allowed_categories` (`categories_ ...

  7. Summer training #5

    B:分析序列 构造树(优先队列) #include <bits/stdc++.h> #include <cstring> #include <iostream> # ...

  8. Python 学习第一天(二)python 入门

    1.第一个python程序 1.1 直接打印输出 打开cmd,输入python进入到python交互式环境:(看到>>>是在Python交互式环境下:) 在python交互环境下输入 ...

  9. java学习笔记(二)分布式框架Dubbo+zookeeper搭建

    参考文章http://www.cnblogs.com/sxjun/p/6963844.html 注意的几个问题: 1.配置dubbo.properties 将以下地址改为你Zookeeper注册的地址 ...

  10. php类知识---try catch

    <?php try { echo "比赛开始"."\n"; ); } catch (Exception $e ) { echo "获取错误信息: ...