题目链接

题意 :

定义不能被平方数整除的数为 Square-free Number

定义 F(i) = 有几对不同的 a 和 b 使得 i = a * b 且 a 、b 都是 Square-free

给出一个 N 求

分析 :

首先 Square-free 有一个性质

就是用唯一分解定理将 Square-free Number 分解后

素因数的指数都是 1

那么对于 a、b 是 Square-free Number

相乘 a * b 得出的 i 其不会有素因子的指数超过 2

然后你要熟悉欧拉筛

欧拉筛之所以是线性是因为、它保证筛出来的合数

都是用其最小质因子筛出来的、且做到不重复

定义 dp[i] = 题目所述的 F[i]  初始化  dp[1] = 1

然后在欧拉筛中进行动态规划、分几种情况

if  i  is prime number dp[i] = 2 ( 分别可以是 a 可以是 b )

if  ( i % prime[j] != 0 ) dp[i] = dp[i] * dp[prime[j]] ( i 不是 prime[j] 的倍数、此方程显然 )

if  ( i % prime[j] == 0){ (表示 i 至少包含了一个 prime[j] )

  if( i % (prime[j]^2) == 0 ) dp[i*prime[j]] = 0 ( i * prime[j] 肯定有素因数指数 > 2 )

  else if( i % prime[j] == 0 )  dp[i*prime[j]] = dp[i/prime[j]] ( i * prime[j] 会使得 prime[j] 这个因子指数为 2、所以就少了它的数量 )

}

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long

#define scl(i) scanf("%lld", &i)
#define scll(i, j) scanf("%lld %lld", &i, &j)
#define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k)
#define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l)

#define scs(i) scanf("%s", i)
#define sci(i) scanf("%d", &i)
#define scd(i) scanf("%lf", &i)
#define scIl(i) scanf("%I64d", &i)
#define scii(i, j) scanf("%d %d", &i, &j)
#define scdd(i, j) scanf("%lf %lf", &i, &j)
#define scIll(i, j) scanf("%I64d %I64d", &i, &j)
#define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k)
#define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k)
#define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k)
#define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l)
#define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l)
#define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l)

#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define lowbit(i) (i & (-i))
#define mem(i, j) memset(i, j, sizeof(i))

#define fir first
#define sec second
#define VI vector<int>
#define ins(i) insert(i)
#define pb(i) push_back(i)
#define pii pair<int, int>
#define VL vector<long long>
#define mk(i, j) make_pair(i, j)
#define all(i) i.begin(), i.end()
#define pll pair<long long, long long>

#define _TIME 0
#define _INPUT 0
#define _OUTPUT 0
clock_t START, END;
void __stTIME();
void __enTIME();
void __IOPUT();
using namespace std;

;

bool isPrime[maxn];
LL Prime[maxn]; ;
LL dp[maxn];
LL ans[maxn];

inline void init()
{
    dp[] = ;
    ans[] = 1LL;

    mem(isPrime, true);

    ; i<=(maxn-); i++){

        if(isPrime[i]){
            dp[i] = ;
            Prime[tot++] = i;
        }

        ; j<tot && i*Prime[j]<=(maxn-); j++){

            isPrime[i*Prime[j]] = false;

            ){

                ) dp[i*Prime[j]] = ;
                else dp[i*Prime[j]] = dp[i / Prime[j]];

                break;

            }else dp[i*Prime[j]] = dp[i] * dp[Prime[j]];
        }
        ans[i] = ans[i-] + (LL)dp[i];
    }
}

int main(void){__stTIME();__IOPUT();

    init();

    int nCase;
    sci(nCase);

    while(nCase--){
        int n;
        sci(n);
        printf("%lld\n", ans[n]);
    }

__enTIME();;}

void __stTIME()
{
    #if _TIME
        START = clock();
    #endif
}

void __enTIME()
{
    #if _TIME
        END = clock();
        cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl;
    #endif
}

void __IOPUT()
{
    #if _INPUT
        freopen("in.txt", "r", stdin);
    #endif
    #if _OUTPUT
        freopen("out.txt", "w", stdout);
    #endif
}

2018 南京预选赛 J Sum ( 欧拉素数筛 、Square-free Number、DP )的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 J.sum(欧拉筛)

    题目来源:https://nanti.jisuanke.com/t/A1956 题意:找一个数拆成无平方因子的组合数,然后求前缀和. 解题思路:我们可以把某个数分解质因数,如果某个数可以分解出三个相同 ...

  2. HDU - 4548-美素数 (欧拉素数筛+打表)

    小明对数的研究比较热爱,一谈到数,脑子里就涌现出好多数的问题,今天,小明想考考你对素数的认识.  问题是这样的:一个十进制数,如果是素数,而且它的各位数字和也是素数,则称之为"美素数&quo ...

  3. 欧拉函数O(sqrt(n))与欧拉线性筛素数O(n)总结

    欧拉函数: 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. POJ 2407.Relatives-欧拉函数 代码O(sqrt(n)): ll euler(ll n){ ll ans=n; ...

  4. [POJ1595]欧拉线性筛(虽然这道题不需要...)

    欧拉线性筛. 对于它的复杂度的计算大概思考了很久. procedure build_prime; var i,j:longint; begin fillchar(vis,sizeof(vis),tru ...

  5. poj2909 欧拉素数筛选

    刚刚学了一种新的素数筛选法,效率比原先的要高一些,据说当n趋近于无穷大时这个的时间复杂度趋近O(n).本人水平有限,无法证明. 这是道水题,贴代码出来重点是欧拉筛选法.我把原来普通的筛选法贴出来. / ...

  6. 【bzoj3944/bzoj4805】Sum/欧拉函数求和 杜教筛

    bzoj3944 题目描述 输入 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 输出 一共T行,每行两个用空格分隔的数ans1,ans2 样例输 ...

  7. Sum(欧拉降幂+快速幂)

    Input 2 Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The input file consists of multiple test cas ...

  8. HDU - 2824 The Euler function 欧拉函数筛 模板

    HDU - 2824 题意: 求[a,b]间的欧拉函数和.这道题卡内存,只能开一个数组. 思路: ϕ(n) = n * (p-1)/p * ... 可利用线性筛法求出所有ϕ(n) . #include ...

  9. 【BZOJ3944/4805】Sum/欧拉函数求和 杜教筛

    [BZOJ3944]Sum Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用 ...

随机推荐

  1. Python 最常见的 170 道面试题解析:2019 最新

    Python 最常见的 170 道面试题解析:2019 最新 2019年06月03日 23:30:10 GitChat的博客 阅读数 21329 文章标签: PythonPython入门Python面 ...

  2. 查询进程内存,cpu占用情况。僵尸进程

    查使用内存最多的5个进程:ps aux | head -1 && ps aux | grep -v USER | sort -nr -k 4 | head -5 查使用CPU最多的5个 ...

  3. css 字体库和动画

    @font-face { font-family:'WebSymbols'; src: url('../font/WebSymbols-Regular.otf'); } .icon{ font-fam ...

  4. Markdown之基础语法

    Markdown是一种纯文本格式的标记语言.通过简单的标记语法,它可以使普通文本内容具有一定的格式 优点: 1.因为是纯文本,所以只要支持Markdown的地方都能获得一样的编辑效果,可以让作者摆脱排 ...

  5. otter+canal

    https://blog.csdn.net/u011142688/article/details/52046928 https://blog.csdn.net/chenzeyuczy/article/ ...

  6. 基于JWT的token身份认证方案(转)

    https://www.cnblogs.com/xiangkejin/archive/2018/05/08/9011119.html 一.使用JSON Web Token的好处? 1.性能问题. JW ...

  7. ASE第二次结对编程——Code Search

    复现极限模型 codenn 原理 其原理大致是将代码特征映射到一个向量,再将描述文字也映射到一个向量,将其cos距离作为loss训练. 对于代码特征,原论文提取了函数名.调用API序列和token集: ...

  8. fetch的文件流下载及下载进度获取

    下载过程中,获取进度,fetch API并没有提供类似xhr和ajax的 progress所以用 getReader()来循环读取大小 let size = 0; fetch( URL() + `/s ...

  9. svn+jenkins自动部署

    需求:项目经理想要将原型图修改完后直接发布 前置条件: 已经有了svn服务器,并正常使用 已经有了jenkins服务器,之前搭建的gitlab+jenkins, 如需搭建jenkins,参考 http ...

  10. fastadmin Excel导出时数字被科学计数

    /public/assets/libs/bootstrap-table/dist/extensions/export/bootstrap-table-export.min.js //exportOpt ...