P1121 环状最大两段子段和

难度 提高+/省选-

题目描述

给出一段环状序列,即认为A[1]和A[N]是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大。

输入输出格式

输入格式:

输入文件maxsum2.in的第一行是一个正整数N,表示了序列的长度。

第2行包含N个绝对值不大于10000的整数A[i],描述了这段序列,第一个数和第N个数是相邻的。

输出格式:

输入文件maxsum2.out仅包括1个整数,为最大的两段子段和是多少。

输入输出样例

输入样例#1:

7

2 -4 3 -1 2 -4 3

输出样例#1:

9

说明

【样例说明】

一段为3

/*
DP.
最大子段和问题.
n^2的做法是
拆成链对每一个区间维护最大前缀/后缀和.
然后枚举断点.
这个很好想但过不了so没打(懒~).
看了看题解orz.
恩o(n).
最大子段和无非就有两种情况.
(1)跨区间的.
(2)在[1,n]中的.
然后难搞的可能是(1).
然后我们换个思路.
我们在[1,n]中求一个最小前缀/后缀和.
然后用sum减去即可.
正确性是显然的.
因为求最小的时候我们默认包括[i,i+1].
这段不选的最小子段区间必定是连续的.
故选的必定为1段(如果选的是[1,i],[i+1,n]这一段
我们也可以认为它们是分开选的两段).
*/
#include<iostream>
#include<cstdio>
#define MAXN 200001
using namespace std;
int maxl[MAXN],maxr[MAXN],minl[MAXN],minr[MAXN],n,s[MAXN],sum,ans=-1e9,max1,min1;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
int main()
{
n=read();
for(int i=1;i<=n;i++) s[i]=read(),sum+=s[i];
maxl[1]=minl[1]=max1=min1=s[1];
for(int i=2;i<=n;i++)
{
if(max1>0) max1+=s[i];
else max1=s[i];
if(min1<0) min1+=s[i];
else min1=s[i];
maxl[i]=max(maxl[i-1],max1);
minl[i]=min(minl[i-1],min1);
}
maxr[n]=minr[n]=max1=min1=s[n];
for(int i=n-1;i>=1;i--)
{
if(max1>0) max1+=s[i];
else max1=s[i];
if(min1<0) min1+=s[i];
else min1=s[i];
maxr[i]=max(maxr[i+1],max1);
minr[i]=min(minr[i+1],min1);
}
for(int i=1;i<=n-1;i++)
{
ans=max(ans,maxl[i]+maxr[i+1]);
if(sum-minl[i]-minr[i+1]) ans=max(ans,sum-minl[i]-minr[i+1]);
} printf("%d",ans);
return 0;
}

P1121 环状最大两段子段和(DP)的更多相关文章

  1. 洛谷 P1121 环状最大两段子段和 解题报告

    P1121 环状最大两段子段和 题目描述 给出一段环状序列,即认为\(A_1\)和\(A_N\)是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大. 输入输出格式 输入格式: 第一行是一个正整数 ...

  2. P1121 环状最大两段子段和

    P1121 环状最大两段子段和 题目描述 给出一段环状序列,即认为A[1]和A[N]是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大. 输入输出格式 输入格式: 输入文件maxsum2.in的 ...

  3. 洛谷P1121 环状最大两段子段和

    题目描述 给出一段环状序列,即认为A[1]和A[N]是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大. 输入输出格式 输入格式: 输入文件maxsum2.in的第一行是一个正整数N,表示了序列 ...

  4. 洛谷 P1121 环状最大两段子段和

    https://www.luogu.org/problemnew/show/P1121 不会做啊... 看题解讲的: 答案的两段可能有两种情况:一是同时包含第1和第n个,2是不同时包含第1和第n个 对 ...

  5. luogu P1121 环状最大两段子段和

    嘟嘟嘟 一道说难也难说简单也简单的dp题. 我觉得我的(有篇题解)做法就属于特别简单的. 平时遇到环的问题都是断环为链,但这道题给了一种新的思路. 观察一下,最后的答案无非就这两种:xxx--xx-- ...

  6. 洛谷 P1121 环状最大两段子段和 题解

    每日一题 day57 打卡 Analysis 对于这个问题,由于分成了两个子序列,我们不妨就是枚举一下可能出现的情况: 无非就这两种: 1.+++++0000+++++0000++++ 2.0000+ ...

  7. 【u124】环状最大两段子段和

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 给出一段环状序列,即认为A[1]和A[N]是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大. ...

  8. luogu 1121 环状最大两段子段和

    题目大意: 一个序列看做一个环 选两段数使它们和最大 思路: 定义一个dp数组i j 0/1 表示前i个取了连续的j段 0/1表示取不取第i个 但是因为看做一个环 首尾相接的情况可以看做是选三段,其中 ...

  9. Luogu1121:环状最大两段子段和

    题面 传送门 Sol 两种情况 第一种就是类似\(***000***000***(0表示选)\),这个可以DP 设\(h[0/1/2/3][i]\)表示到第\(i\)位的状态: \(0\):表示还没选 ...

随机推荐

  1. ASP.NET练习③——AspNetChosmePager

    aspx代码: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="_Chosm ...

  2. python设计购物车

    设计购物车 一需求: 1.启动程序后,输入用户名密码后,如果是第一次登录,让用户输入工资,然后打印商品列表 2.允许用户根据商品编号购买商品 3.用户选择商品后,检测余额是否够,够就直接扣款,不够就提 ...

  3. Vasya and Magic Matrix CodeForces - 1042E (概率dp)

    大意:给定n*m矩阵, 初始位置(r,c), 每一步随机移动到权值小于当前点的位置, 得分为移动距离的平方, 求得分期望. 直接暴力dp的话复杂度是O(n^4), 把距离平方拆开化简一下, 可以O(n ...

  4. centos7 源码安装 MongoDb

    1.下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.2.12.tgz 2.解压 放到 /usr/local/ ...

  5. 搭建kafka集群

    1:确认zookeeper集群安装正确,防火墙关闭 2:下载kafka安装文件 cd /usr/local/mydown wget http://mirror.bit.edu.cn/apache/ka ...

  6. 一次简单的springboot+dubbo+flume+kafka+storm+redis系统

    最近无事学习一下,用springboot+dubbo+flume+kafka+storm+redis做了一个简单的scenic系统 scenicweb:展现层,springboot+dubbo sce ...

  7. 大数据学习(2)- export、source(附带多个服务器一起启动服务器)

    linux环境中, A=1这种命名方式,变量作用域为当前线程 export命令出的变量作用域是当前进程及其子进程. 可以通过source 脚本,将脚本里面的变量放在当前进程中 附带自己写的tomcat ...

  8. mint-ui下拉加载(demo实例)

    <template> <div class="share"> <div class="header"> <div cl ...

  9. 鼠标悬停设置layui tips提示框

    官方介绍:吸附层,灵活判断出现的位置,默认在元素的右侧弹出. layer.tips(content, follow, options) layer.tips(msg, '#id',{tips: 1}) ...

  10. -bash: ls: No such file or directory 错误的原因及解决办法

    ubuntu出现如下错误: { Welcome to Ubuntu 16.04.5 LTS (GNU/Linux 4.15.0-42-generic x86_64) * Documentation: ...