乘法逆元

什么是乘法逆元?

若整数 \(b,m\) 互质,并且\(b|a\) ,则存在一个整数\(x\) ,使得 \(\frac{a}{b}\equiv ax\mod m\) 。

称\(x\) 是\(b\) 模\(m\) 的乘法逆元,记作\(b^{-1} \mod m\) 。

  • 而\(a/b\equiv a*b^{-1}\equiv a/b*b*b^{-1} \mod m\)
  • 其实就是\(b*b^{-1} \equiv 1\mod m\)

其实就是模意义下除法变乘法。

怎么求乘法逆元?(费马小定理)

  • 费马小定理:如果p是一个质数,而整数a不是p的倍数,则有\(a^{p-1}≡1\mod p\)
  • 也就是说\(a*a^{p-2}≡1\mod p\)
  • 也就是说\(p\) 是素数的时候,其乘法逆元是\(a^{p-2}\)
int qpow(int a, int b, int p){
    int ans=1;
    while(b){
        if(b&1)ans=ans*a%p;
        b>>=1;
        a=a*a%p;
    }
    return ans;
}
int inv(int a, int p){
    return qpow(a,p-2,p);
}

扩展Euclid求逆元

  • 求解\(ax\equiv1\mod m\)
  • 即\(ax-my=1\)
  • 这个\(x\) 就是\(a \mod m\) 的逆元
  • 用扩欧求\(x\) 的话,这个\(y\) 的正负对\(x\) 无影响。
//ax+by=gcd(a,b)
int exgcd(int a,int b,int &x,int &y){
    if(b==0){
        x=1;
        y=0;
        return a;
    }
    int d=exgcd(b,a%b,x,y);
    int z=x;
    x=y;
    y=z-a/b*y;
    return d;
}
//inv(a)
int inv(int a,int p){
    int x,y;
    int d=exgcd(a,p,x,y);
    return d==1?(x%p+p)%p:-1;
}

简记乘法逆元(费马小定理+扩展Euclid)的更多相关文章

  1. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  2. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)

    C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  4. 51nod A 魔法部落(逆元费马小定理)

    A 魔法部落 小Biu所在的部落是一个魔法部落,部落中一共有n+1个人,小Biu是魔法部落中最菜的,所以他的魔力值为1,魔法部落中n个人的魔法值都不相同,第一个人的魔法值是小Biu的3倍,第二个人的魔 ...

  5. HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法

    题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...

  6. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

  7. 【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举 ...

  8. hihocoder #1698 假期计划 (排列组合+费马小定理+乘法逆元)

    Description 小Ho未来有一个为期N天的假期,他计划在假期中看A部电影,刷B道编程题.为了劳逸结合,他决定先拿出若干天看电影,再拿出若干天刷题,最后再留若干天看电影.(若干代指大于0)  每 ...

  9. poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】

    POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...

随机推荐

  1. outlook 升级 及邮件同步方式设置

    **office(outlook2010 32B)升级到office2016 64B时的操作 1.删除office(excel. word等) 2.选择offcie2016 安装程序安装 (outlo ...

  2. (六)lucene之其他查询方式(组合查询,制定数字范围、指定字符串开头)

    本章使用的是lucene5.3.0 指定数字范围查询 package com.shyroke.test; import java.io.IOException; import java.nio.fil ...

  3. 根据xsd文件生成对应的C#类,然后创建对应的xml文件

    首先用xsd文件生产对应的C#类,这个VS已经自带此工单,方法如下: 1. 打开交叉命令行工具 2. 输入如下指令 xsd d:\123.xsd /c /language:C# /outputdir: ...

  4. .net Core CLR

    .net Core CLR是开源的.大部分文件是C++写成.这样他就可以编译后再不同的平台运行. https://github.com/dotnet/coreclr

  5. 为什么领域模型对于架构师如此重要? https://blog.csdn.net/qq_40741855/article/details/84835212

    为什么领域模型对于架构师如此重要? https://blog.csdn.net/qq_40741855/article/details/84835212 2018年12月05日 14:30:19 绝圣 ...

  6. jQuery组件封装之return this.each(function () {});

    记录一下自己的调试历程 组件封装经常看到这么一段代码 $.fn.plugin = function (options) { return this.each(function (i,t) { new ...

  7. form-create教程:自定义布局,实现一行多个组件

    本文将介绍form-create如何自定义布局,实现一行多个组件 form-create 是一个可以通过 JSON 生成具有动态渲染.数据收集.验证和提交功能的表单生成器.并且支持生成任何 Vue 组 ...

  8. MySQL之日期时间函数

      1.NOW() 用法:显示当前日期和时间 举例: mysql> select NOW(); +---------------------+ | NOW() | +-------------- ...

  9. Mysql的管理

    Linux系统中:mysql进入的命令为mysql -u root -p +你的mysql密码. Mysql是如何添加用户呢? 在mysql命令行下,使用use mysql;进入mysql的数据库中. ...

  10. linux设置自动同步服务器时间

    最近遇到一个问题,由于两台服务器时间的问题,经常导致用户登录由于时间差问题而报错,再三百度,最后整理了一下修改linux定时同步的操作(本方法适用于有自己时间服务器,没有的只限于借鉴) 首先确认,我们 ...