Day1 T1

题目描述

为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 n 张地毯,编号从 1 到n 。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。

地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。

输入输出格式

输入格式:

输入文件名为carpet.in 。

输入共n+2 行。

第一行,一个整数n ,表示总共有 n 张地毯。

接下来的n 行中,第 i+1 行表示编号i 的地毯的信息,包含四个正整数 a ,b ,g ,k ,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a ,b )以及地毯在x轴和y 轴方向的长度。

第n+2 行包含两个正整数 x 和y,表示所求的地面的点的坐标(x ,y)。

输出格式:

输出文件名为carpet.out 。

输出共1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1 。

输入输出样例

输入样例#1:

3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
输出样例#1:

3
输入样例#2:

3
1 0 2 3
0 2 3 3
2 1 3 3
4 5
输出样例#2:

-1

说明

【样例解释1】

如下图,1 号地毯用实线表示,2 号地毯用虚线表示,3 号用双实线表示,覆盖点(2,2)的最上面一张地毯是 3 号地毯。

【数据范围】

对于30% 的数据,有 n ≤2 ;

对于50% 的数据,0 ≤a, b, g, k≤100;

对于100%的数据,有 0 ≤n ≤10,000 ,0≤a, b, g, k ≤100,000。

noip2011提高组day1第1题

思路:

  输入数据直接进行模拟即可

坑点:

  要搞清楚a,b,g,k具体代表着什么

上代码:

#include <iostream>
#include <cstdio>
using namespace std; const int M = ;
int n,x0,y0,ans;
bool flag;
struct node {
int x,y,r,c;
}e[M]; int main() {
scanf("%d",&n);
for(int i=; i<=n; i++) scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].r,&e[i].c);
scanf("%d%d",&x0,&y0);
for(int i=n,xl,xr,yl,yr; i>; i--) {
xl=e[i].x,xr=e[i].x+e[i].r,yl=e[i].y,yr=e[i].y+e[i].c;
if(xl<=x0&&x0<=xr && yl<=y0&&y0<=yr) {
ans=i;
flag=true;
break;
}
}
if(flag) printf("%d",ans);
else printf("-1");
return ;
}

Day2 T1

题目描述

给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数。

输入输出格式

输入格式:

输入文件名为factor.in。

共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。

输出格式:

输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。

输入输出样例

输入样例#1:

1 1 3 1 2
输出样例#1:

3

说明

【数据范围】

对于30% 的数据,有 0 ≤k ≤10 ;

对于50% 的数据,有 a = 1,b = 1;

对于100%的数据,有 0 ≤k ≤1,000,0≤n, m ≤k ,且n + m = k ,0 ≤a ,b ≤1,000,000。

noip2011提高组day2第1题

思路:

  用二项式定理以及模拟来解决此题

坑点:

  需要用到快速幂...被自己的快速幂蠢哭了qwq,愣是没看出来....下次再错就....下一顿饭不吃了!(超级狠

上代码:

#include <iostream>
#include <cstdio>
#define LL long long
using namespace std; const int Mod = ;
int k,n,m,a,b;
int C[][]; LL ksm(LL q,LL p) {
LL r=;
for(; p; p>>=) {
if(p&) r=r*q%Mod;
q=q*q%Mod; //这里是q=q*q%Mod ,不是r=r*r%Mod....
}
return r;
} int main() {
scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
C[][]=;
for(int i=; i<=k; i++) C[i][]=C[i][i]=;
for(int i=; i<=k; i++)
for(int j=; j<i; j++)
C[i][j]=(C[i-][j]+C[i-][j-])%Mod;
cout<<C[k][m]*ksm(a,n)*ksm(b,m)%Mod;
return ;
}

Noip2011 提高组 Day1 T1 铺地毯 + Day2 T1 计算系数的更多相关文章

  1. luogu1003铺地毯[noip2011 提高组 Day1 T1]

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  2. Noip2011 提高组 Day1 T3 Mayan游戏

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  3. noip2011提高组day1+day2解题报告

    Day1 T1铺地毯https://www.luogu.org/problem/show?pid=1003 [题目分析] 全部读入以后从最后一个往前找,找到一个矩形的范围覆盖了这个点,那这个矩形就是最 ...

  4. NOIP2011 提高组 Day1

    自测:8:27——11:51 实际得分:100+60+20=180 期望得分:100+60+40=200 T3读错题,失20 http://cogs.pro/cogs/page/page.php?ai ...

  5. [NOIP2011提高组day1]-3-mayan游戏

    3.Mayan 游戏 (mayan.cpp/c/pas) [问题描述] Mayan puzzle 是最近流行起来的一个游戏.游戏界面是一个 7行 5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即 ...

  6. NOIP2011提高组 Day1 T3 Mayan游戏

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个7行×5列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定的步 ...

  7. [NOIP2011] 提高组 洛谷P1003 铺地毯

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  8. 洛谷-铺地毯-NOIP2011提高组复赛

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  9. 洛谷P1003 [NOIP2011提高组Day1T1]铺地毯

    P1003 铺地毯 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号 ...

随机推荐

  1. SAS学习笔记35 options语句

  2. Struts2连接Mysql的Crud使用

    今天分享的是struts2框架中增删改查的用法: 一:利用Struts2框架 1.1在pom.xml中导入相关依赖 <project xmlns="http://maven.apach ...

  3. 【转】Visual Studio Code必备插件

    先ctrl+shift+p,弹出命令面板-选中Extensions:Install Extensions 或者直接点击左侧栏这个扩展按钮(Ctrl+Shift+X) 然后左侧栏就会显示出很多插件,如图 ...

  4. css 动画(一)transform 变形

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 有段时间我是没理清 transform.translate.transition 和 animation之 ...

  5. 22-MySQL DBA笔记-其他产品的选择

    第22章 其他产品的选择 本章将为读者介绍其他的数据库产品,主要是NoSQL产品的选择.读者在熟悉MySQL之外,也应该了解其他的数据库产品.本章的目的是给读者一个引导,如何选择一些NoSQL产品,而 ...

  6. (六)CXF之自定义拦截器

    一.需求分析 客户端在调用服务端的方法时,需要进行用户名和密码验证.此时分为: 客户端请求的时候,要发送用户名密码到服务端 服务端检验用户名密码. 二.案例 前提:本章案例是基于前一章节的例子进一步讲 ...

  7. 数据结构-平衡二叉树Java实现

    1,Node.java package com.cnblogs.mufasa.BalanceBinaryTree; public class Node { Node parent; Node left ...

  8. .netcore 和.netFrameWork

    netcore 是一个流程,可以调用,netcore 框架下,选择netFrameWork.可以使用netFrameWork的库,比如画图等.只是管道是netcore的.

  9. XML-RPC-2RPC

    远程过程调用协议 RPC一般指远程过程调用协议 RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协 ...

  10. 封装jquery的ajax

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...