luoguP4778 Counting swaps
题解
首先,对于每个\(i\)向\(a[i]\)连边.
这样会连出许多独立的环.
可以证明,交换操作不会跨越环.
每个环内的点到最终状态最少交换步数是 \(环的大小-1\)
那么设\(f[i]\)表示环大小为\(i\)的方案数
则
\]
其中
\]
打标可以发现\(f[n] = n^{n-2}(n≠1)\)
那么假设有\(k\)个环,第\(i\)个环大小为\(a[i]\)
则
\]
\(T\)是把\(n-k\)步分进每个环的方案数
\(T=\frac{(n-k)!}{\prod(a[i]-1)!}\)
还有另一种方法算\(T\)(具体看代码)
Code
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, Mod = 1e9 + 9;
int fpow(int a, int b) {
if (b <= 0) return 1;
int res = 1;
for (; b; b >>= 1, a = 1ll * a * a % Mod) if (b & 1) res = 1ll * res * a % Mod;
return res;
}
bool vis[N];
int to[N], a[N];
int dfs(int x) {
vis[x] = 1;
if (vis[to[x]]) return 1;
else return 1 + dfs(to[x]);
}
int fac[N], ifac[N];
int C(int n, int m) {
if (n < m) return 0;
return 1ll * fac[n] * ifac[n - m] % Mod * ifac[m] % Mod;
}
void solve() {
int n, ans = 1;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &to[i]);
memset(vis, 0, sizeof(vis));
int len = 0;
for (int i = 1; i <= n; i++)
if (!vis[i])
a[++len] = dfs(i);
// for (int i = 1; i <= len; i++) ans = 1ll * ans * fpow(a[i], a[i] - 2) % Mod * ifac[a[i] - 1] % Mod;
for (int i = 1, sum = 0; i <= len; sum += a[i++] - 1)
ans = 1ll * ans * fpow(a[i], a[i] - 2) % Mod * C(n - sum - len, a[i] - 1) % Mod;
printf("%d\n", /*1ll * ans * fac[n - len] % Mod*/ans);
return ;
}
int main() {
int T;
scanf("%d", &T);
fac[0] = 1;
for (int i = 1; i <= 100000; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
ifac[100000] = fpow(fac[100000], Mod - 2);
for (int i = 100000; i >= 1; i--) ifac[i - 1] = 1ll * ifac[i] * i % Mod;
while (T--) solve();
return 0;
}
luoguP4778 Counting swaps的更多相关文章
- CH3602 Counting Swaps
题意 3602 Counting Swaps 0x30「数学知识」例题 背景 https://ipsc.ksp.sk/2016/real/problems/c.html Just like yeste ...
- Counting swaps
Counting swaps 给你一个1-n的排列,问用最少的交换次数使之变为递增排列的方案数\(mod\ 10^9+7\),1 ≤ n ≤ 10^5. 解 显然最少的交换次数不定,还得需要找到最小交 ...
- 洛谷P4778 Counting swaps 数论
正解:数论 解题报告: 传送门! 首先考虑最终的状态是固定的,所以可以知道初始状态的每个数要去哪个地方,就可以考虑给每个数$a$连一条边,指向一个数$b$,表示$a$最后要移至$b$所在的位置 显然每 ...
- luogu P4778 Counting swaps
计数套路题?但是我连套路都不会,,, 拿到这道题我一脸蒙彼,,,感谢@poorpool 大佬的博客的指点 先将第\(i\)位上的数字\(p_i\)向\(i\)连无向边,然后构成了一个有若干环组成的无向 ...
- LFYZOJ 104 Counting Swaps
题解 #include <iostream> #include <cstdio> #include <algorithm> #include <cmath&g ...
- lfyzoj104 Counting Swaps
问题描述 给定你一个 \(1 \sim n\) 的排列 \(\{p_i\}\),可进行若干次操作,每次选择两个整数 \(x,y\),交换 \(p_x,p_y\). 请你告诉穰子,用最少的操作次数将给定 ...
- P4778 Counting Swaps 题解
第一道 A 掉的严格意义上的组合计数题,特来纪念一发. 第一次真正接触到这种类型的题,给人感觉好像思维得很发散才行-- 对于一个排列 \(p_1,p_2,\dots,p_n\),对于每个 \(i\) ...
- 0x36 组合计数
组合计算的性质: C(n,m)= m! / (n!(m-n)!) C(n,m)=C(m-n,m); C(n,m)=C(n,m-1)+C(n-1,m-1); 二项式定理:(a+b)^n=sigema(k ...
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
随机推荐
- 谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN
谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 ...
- JSON序列化必看以及序列化工具类
1.要序列化的类必须用 [DataContract] 特性标识 2.需要序列化的属性应用 [DataMember] 特性标识,没有该特性则表示不序列化该属性.类亦如此! 3.可以网络上找封装好 ...
- 可视化利器 TensorBoard
人工智能的黑盒: TensorBoard 的作用: 1.用TensorFlow保存图的信息到日志中 tfsummary.FileWriter("日志保存路径", sess.grap ...
- 谷歌浏览器调试手机app内置网页
当自己的H5项目内置于手机app内时,遇到了样式问题或者想查看H5页面代码.数据交互以及缓存等情况来检查数据,此时可以使用谷歌浏览器的控制台远程调试手机,步骤如下: 一.手机开启允许usb调试 二.手 ...
- 【Mysql MHA】CentOS7.6+Mysql8.0.16 入坑
1.防火墙 firewall-cmd --add-port=/tcp --permanent firewall-cmd --reload 2.SELINUX sed -i 's/SELINUX=enf ...
- 【异常】airflow-psutil/_psutil_common.c:9:20: fatal error: Python.h: No such file or directory
1 异常信息 usr/include/python3.6m -c psutil/_psutil_common.c -o build/temp.linux-x86_64-3.6/psutil/_psut ...
- win10激活密钥
专业版:W269N-WFGWX-YVC9B-4J6C9-T83GX 企业版:NPPR9-FWDCX-D2C8J-H872K-2YT43 家庭版:TX9XD-98N7V-6WMQ6-BX7FG-H8Q9 ...
- synchronized 和 volatile 的区别是什么?(未完成)
synchronized 和 volatile 的区别是什么?(未完成)
- WPF绑定功能常用属性介绍
1.Mode 绑定中数据流的方向(enum BindingMode) 目标属性指的是控件的属性 (1)TwoWay 更改源属性或目标属性时,会自动更新另一方.适用于可编辑窗体 例:TextBox (2 ...
- day 02(作业)
作业 1.什么是编程 编程即编写程序,基于某种语法格式将想要实现的事情写出可以让计算机能够理解的文件,文件的集合即为程序.目的是使计算机操作更简单及大众化,提高工作效率. 2.简述计算机五大组成. 控 ...