ZOJ4019——贪心&&DP
题目
大意:有一个容量为$c$的背包,有$n$个$s_1$类物体,价值都为$k_1$,体积分别为$s_{1,1}, s_{1,2}, \cdots, s_{1,n}$,有$m$个$s_2$类物体,价值都为$k_2$体积分别为$s_{2,1}, s_{2,2}, \cdots, s_{2,m}$,求背包能装下的最大价值。(价值的计算方法:$k_i * (c - s_i)$)
分析
背包问题,但又要 先做贪心的处理,为什么可以贪心呢?因为有这样一个事实,对于同一类物品,肯定是优先放体积小的,因为体积小r就大,因此先对两类物品按照体积分别排序。
所以最终选的物品的结果肯定是第一类物品的前i项,第二类物品的前j项 $(i,j >= 0)$
所以我们可以很轻松地定义DP中的“状态”了。定义$dp[i][j]$为取了第一类物品的前$i$项,第二类物品的前$j$项 所获得的价值。
状态转移方程 :
$dp[i][j] = max \{ dp[i-1][j] + (C - Sum1[i] - Sum2[j] )*k1, \ \ dp[i][j-1] + (C - Sum2[j] - Sum1[i] )*k1 \}$
其中$Sum1 $是第一类物品体积前缀和,$Sum2$ 是第二类物品体积前缀和。
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn = + ;
const int maxm = + ;
int k1, k2, cap, n, m;
int s1[maxn], s2[maxm];
ll sum1[maxn], sum2[maxm], dp[maxn][maxm]; int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &k1, &k2, &cap);
scanf("%d%d", &n, &m);
for(int i = ;i <= n;i++) scanf("%d", &s1[i]);
for(int i = ;i <= m;i++) scanf("%d", &s2[i]);
sort(s1+, s1+n+);
sort(s2+, s2+m+);
for(int i = ;i <= n;i++) sum1[i] = sum1[i-] + s1[i]; //可以看作只从一者取,也可看做初始化边界
for(int i = ;i <= m;i++) sum2[i] = sum2[i-] + s2[i]; // ll ans = -;
for(int i=; i <= n;i++)
{
if(cap < sum1[i]) break;
dp[i][] = dp[i-][] + (cap - sum1[i]) * k1;
ans = max(ans, dp[i][]);
}
for(int i=; i <= m;i++)
{
if(cap < sum2[i]) break;
dp[][i] = dp[][i-] + (cap - sum2[i]) * k2;
ans = max(ans, dp[][i]);
} for(int i = ;i <= n;i++)
for(int j = ;j <= m;j++)
{
if(cap < sum1[i]+sum2[j]) break;
dp[i][j] = max(dp[i-][j] + k1 * (cap - sum1[i] - sum2[j]), dp[i][j-] + k2 * (cap - sum1[i] - sum2[j]));
ans = max(ans, dp[i][j]);
}
printf("%lld\n", ans);
}
return ;
}
参考链接:
1. 分析 https://www.cnblogs.com/czsharecode/p/9606768.html
2. 代码 https://blog.csdn.net/qq_41156122/article/details/79855315
ZOJ4019——贪心&&DP的更多相关文章
- 【BZOJ-3174】拯救小矮人 贪心 + DP
3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 686 Solved: 357[Submit][Status ...
- BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP
BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀 ...
- 洛谷P4823 拯救小矮人 [TJOI2013] 贪心+dp
正解:贪心+dp 解题报告: 传送门! 我以前好像碰到过这题的说,,,有可能是做过类似的题qwq? 首先考虑这种显然是dp?就f[i][j]:决策到了地i个人,跑了j个的最大高度,不断更新j的上限就得 ...
- 【bzoj5073】[Lydsy1710月赛]小A的咒语 后缀数组+倍增RMQ+贪心+dp
题目描述 给出 $A$ 串和 $B$ 串,从 $A$ 串中选出至多 $x$ 个互不重合的段,使得它们按照原顺序拼接后能够得到 $B$ 串.求是否可行.多组数据. $T\le 10$ ,$|A|,|B| ...
- 【bzoj3174】[Tjoi2013]拯救小矮人 贪心+dp
题目描述 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人,我们知道他从脚 ...
- hdu 1257 最少拦截系统【贪心 || DP——LIS】
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1257 http://acm.hust.edu.cn/vjudge/contest/view.action ...
- 贪心+DP【洛谷P4823】 [TJOI2013]拯救小矮人
P4823 [TJOI2013]拯救小矮人 题目描述 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以 ...
- 贪心+dp
贪心+dp 好多题都是这个思想, 可以说是非常重要了 思想一: 在不确定序列无法dp的情况下, 我们不妨先假设序列已经选定, 而利用贪心使序列达到最优解, 从而先进行贪心排序, 在进行dp选出序列 思 ...
- 【题解】CF1056F Write the Contest(三分+贪心+DP)
[题解]CF1056F Write the Contest(三分+贪心+DP) 最优化问题的三个解决方法都套在一个题里了,真牛逼 最优解应该是怎样的,一定存在一种最优解是先完成了耗时长的任务再干别的( ...
随机推荐
- HBase的简单介绍,寻址过程,读写过程
HBase是列族数据库,主要由,表,行键,列族,列标识,值,时间戳 组成, 表 其中HBase 主要底层存储依赖与hdfs,可以在HDFS中看到每个表名都作为一个独立的目录结构 ...
- EMR-LDAP配置
usersync是负责在配置policy的时候可选用户有ldap里的用户,admin是负责登录webui的 https://cwiki.apache.org/confluence/display/RA ...
- 关于typescript中的枚举你需要知道这些
数字枚举 数字枚举,即枚举里所有属性的值都是数字类型,先看这段代码: enum Colors { Red, Blue, Yellow } console.log(Colors.Red) console ...
- python3 虚拟环境的创建
创建虚拟环境的方法有很多种,我来分享一下我最常用的虚拟环境的创建方法和一些命令的使用, 什么是虚拟环境? 知道的可以略过,不知道的可以听我简单的说下.虚拟环境这四个字,一听你就明白什么意思了,首先理解 ...
- Class.getResources()和classLoader.getResources()区别
Class.getResource(String path) path不以’/'开头时,默认是从此类所在的包下取资源: path 以’/'开头时,则是从ClassPath根下获取: package t ...
- 牛客 216D 消消乐 (二分图最小点覆盖)
大意: 给定棋盘, 每次消除一行或一列, 求最小次数使得消除完所有'*'. 裸的二分图最小点覆盖. 二分图的最小点覆盖等于最大匹配, 输出方案时从所有左部未盖点开始标记交替路上的点, 最后左部所有未标 ...
- 基于APM实现RPC服务和消息队列的指定消费
本文内容是基于公司现有框架整理的一篇专利文章.该框架包含完整的一套DevOps流程,包括工单系统(容器申请.服务部署等)\配置中心\路由配置中心\服务治理平台\消息治理平台\葛朗台(基于Docker+ ...
- javascript——获取元素方式
//1:依据id //var element = document.getElementById("test"); console.log(element); //2:依据clas ...
- aspectcore 简单解析
.netcore 下aspectcore 的使用 动态代理: static void Main(string[] args) { Console.WriteLine("Hello Worl ...
- VBA精彩代码分享-3
在开发VBA程序中,我们可能会需要用代码处理VBA工程,包括启用VBA工程访问,启用所有宏,动态插入代码,动态删除代码,动态添加引用和自动创建模块等等,本次的分享内容便以这些为主. 启用VBA工程访问 ...