Hive分区表创建、分类
一、分区表创建与说明
必须在表定义时创建partition
a、单分区建表语句:create table day_table (id int, content string) partitioned by (dt string);单分区表,按天分区,在表结构中存在id,content,dt三列。
以dt为文件夹区分
b、 双分区建表语句:create table day_hour_table (id int, content string) partitioned by (dt string, hour string);双分区表,按天和小时分区,在表结构中新增加了dt和hour两列。
先以dt为文件夹,再以hour子文件夹区分
添加分区表语法(表已创建,在此基础上添加分区):ALTER TABLE table_name ADD
partition_spec [ LOCATION 'location1' ]
partition_spec [ LOCATION 'location2' ] ...
ALTER TABLE day_table ADD
PARTITION (dt='2008-08-08', hour='08')
location '/path/pv1.txt'
删除分区语法:ALTER TABLE table_name DROP
partition_spec, partition_spec,...
用户可以用 ALTER TABLE DROP PARTITION 来删除分区。分区的元数据和数据将被一并删除。例:
ALTER TABLE day_hour_table DROP PARTITION (dt='2008-08-08', hour='09');
数据加载进分区表中语法:
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
例:
LOAD DATA INPATH '/user/pv.txt' INTO TABLE day_hour_table PARTITION(dt='2008-08- 08', hour='08'); LOAD DATA local INPATH '/user/hua/*'
INTO TABLE day_hour partition(dt='2010-07- 07');当数据被加载至表中时,不会对数据进行任何转换。Load操作只是将数据复制至Hive表对应的位置。数据加载时在表下自动创建一个目录
基于分区的查询的语句:SELECT
day_table.* FROM day_table WHERE day_table.dt>= '2008-08-08';
查看分区语句:
hive> show partitions day_hour_table; OK dt=2008-08-08/hour=08 dt=2008-08-08/hour=09 dt=2008-08-09/hour=09
二、静态与动态分区表
partition是hive提供的一种机制:用户通过指定一个或多个partition key,决定数据存放方式,进而优化数据的查询
一个表可以指定多个partition key,每个partition在hive中以文件夹的形式存在。
1、静态分区(static partition):
编辑文件:/home/work/data/test3.txt; /home/work/data/test4.txt;
$ cat /home/work/data/test3.txt
1,zxm
2,ljz
3,cds
4,mac
5,android
6,symbian
7,wp
$ cat /home/work/data/test4.txt
8,zxm
9,ljz
10,cds
11,mac
12,android
13,symbian
14,wp
建表:
hive> create table student_tmp(id INT, name STRING)
> partitioned by(academy STRING, class STRING)
> row format delimited fields terminated by ',';
OK
Time taken: 6.505 seconds
id,name是真实列,partition列academy和class是伪列
load数据:(此处直接load数据进partition,在hive 0.6之前的版本,必须先创建好partition,数据才能导入)
hive> load data local inpath '/home/work/data/test3.txt' into table student_tmp partition(academy='computer', class='034');
Copying data from file:/home/work/data/test3.txt
Copying file: file:/home/work/data/test3.txt
Loading data to table default.student_tmp partition (academy=computer, class=034)
OK
Time taken: 0.898 seconds
hive> load data local inpath '/home/work/data/test3.txt' into table student_tmp partition(academy='physics', class='034');
Copying data from file:/home/work/data/test3.txt
Copying file: file:/home/work/data/test3.txt
Loading data to table default.student_tmp partition (academy=physics, class=034)
OK
Time taken: 0.256 seconds
查看hive文件结构:
$ hadoop fs -ls /user/hive/warehouse/student_tmp/
Found 2 items
drwxr-xr-x - work supergroup 0 2012-07-30 18:47 /user/hive/warehouse/student_tmp/academy=computer
drwxr-xr-x - work supergroup 0 2012-07-30 19:00 /user/hive/warehouse/student_tmp/academy=physics
$ hadoop fs -ls /user/hive/warehouse/student_tmp/academy=computer
Found 1 items
drwxr-xr-x - work supergroup 0 2012-07-30 18:47 /user/hive/warehouse/student_tmp/academy=computer/class=034
查询数据:
hive> select * from student_tmp where academy='physics';
OK
1 zxm physics 034
2 ljz physics 034
3 cds physics 034
4 mac physics 034
5 android physics 034
6 symbian physics 034
7 wp physics 034
Time taken: 0.139 seconds
以上是static partition的示例,static partition即由用户指定数据所在的partition,在load数据时,指定partition(academy='computer', class='034');
static partition常适用于使用处理时间作为partition key的例子。
但是,我们也常常会遇到需要向分区表中插入大量数据,并且插入前不清楚数据归宿的partition,此时,我们需要dynamic partition。
使用动态分区需要设置hive.exec.dynamic.partition参数值为true。
可以设置部分列为dynamic partition列,例如:partition(academy='computer', class);
也可以设置所有列为dynamic partition列,例如partition(academy, class);
设置所有列为dynamic partition列时,需要设置hive.exec.dynamic.partition.mode=nonstrict
需要注意的是,主分区为dynamic partition列,而副分区为static partition列是不允许的,例如partition(academy, class=‘034’);是不允许的
2、动态分区(dynamic partition):
建表
hive> create table student(id INT, name STRING)
> partitioned by(academy STRING, class STRING)
> row format delimited fields terminated by ',';
OK
Time taken: 0.393 seconds
设置参数
hive> set hive.exec.dynamic.partition.mode=nonstrict;
hive> set hive.exec.dynamic.partition=true;
导入数据:
hive> insert overwrite table student partition(academy, class)
> select id,name,academy,class from student_tmp
> where class='034';
Total MapReduce jobs = 2
.........
OK
Time taken: 29.616 seconds
查询数据:
hive> select * from student where academy='physics';
OK
1 zxm physics 034
2 ljz physics 034
3 cds physics 034
4 mac physics 034
5 android physics 034
6 symbian physics 034
7 wp physics 034
Time taken: 0.165 seconds
查看文件:
$ hadoop fs -ls /user/hive/warehouse/student/
Found 2 items
drwxr-xr-x - work supergroup 0 2012-07-30 19:22 /user/hive/warehouse/student/academy=computer
drwxr-xr-x - work supergroup 0 2012-07-30 19:22 /user/hive/warehouse/student/academy=physics
3、总结:
hive partition是通过将数据拆分成不同的partition放入不同的文件,从而减少查询操作时数据处理规模的手段。
例如,Hive Select查询中,如果没有建partition,则会扫描整个表内容,这样计算量巨大。如果我们在相应维度做了partition,则处理数据规模可能会大大减少。
|
4、附partition相关参数:
hive.exec.dynamic.partition(缺省false): 设置为true允许使用dynamic partition
hive.exec.dynamic.partition.mode(缺省strick):设置dynamic partition模式(nostrict允许所有partition列都为dynamic partition,strict不允许)
hive.exec.max.dynamic.partitions.pernode (缺省100):每一个mapreduce job允许创建的分区的最大数量,如果超过了这个数量就会报错
hive.exec.max.dynamic.partitions (缺省1000):一个dml语句允许创建的所有分区的最大数量
hive.exec.max.created.files (缺省100000):所有的mapreduce job允许创建的文件的最大数量
Hive分区表创建、分类的更多相关文章
- Hive分区表创建,增加及删除
1.创建Hive分区表,按字段分区 CREATE TABLE test1 ( id bigint , create_time timestamp , user_id string) partition ...
- Hadoop: the definitive guide 第三版 拾遗 第十二章 之Hive分区表、桶
Hive分区表 在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念.分区表指的是在创建表时指 ...
- Hive分区表的导入与导出
最近在做一个小任务,将一个CDH平台中Hive的部分数据同步到另一个平台中.毕竟我也刚开始工作,在正式开始做之前,首先进行了一段时间的练习,下面的内容就是练习时写的文档中的内容.如果哪里有错误或者疏漏 ...
- spark 将dataframe数据写入Hive分区表
从spark1.2 到spark1.3,spark SQL中的SchemaRDD变为了DataFrame,DataFrame相对于SchemaRDD有了较大改变,同时提供了更多好用且方便的API.Da ...
- 如何每日增量加载数据到Hive分区表
如何每日增量加载数据到Hive分区表 hadoop hive shell crontab 加载数据 数据加载到Hive分区表(两个分区,日期(20160316)和小时(10))中 每日加载前一天的日志 ...
- hive 分区表
hive中创建分区表没有什么复杂的分区类型(范围分区.列表分区.hash分区.混合分区等).分区列也不是表中的一个实际的字段,而是一个或者多个伪列.意思是说在表的数据文件中实际上并不保存分区列的信息与 ...
- 2.6 hive分区表
一.背景 ######### 分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件. Hive中的分区就是分目录,把一个大的数据集根据业务需要分割成更小的数据集. ...
- 解决Spark读取Hive分区表出现Input path does not exist的问题
假设这里出错的表为test表. 现象 Hive读取正常,不会报错,Spark读取就会出现: org.apache.hadoop.mapred.InvalidInputException: Input ...
- hive分区表
分区表创建 row format delimited fields terminated by ',';指明以逗号作为分隔符 依靠插入表创建分区表 从表sample_table选择 满足分区条件的 ...
随机推荐
- DBCP连接池参数解释
1.<!-- 数据源1 --> 2. <bean id="dataSource" 3. class="org.apache.commons.dbcp.B ...
- Monkeyrunner 使用说明
monkeyrunner为android系统新公开的一个测试工具.有助于开发人员通过脚本部署较大规模的自动化测试. Monkeyrunner 本文档中包含 一个简单的monkeyrunne ...
- shell脚本安装python、pip-----非交互式的--批量执行函数
首先把pip-.tgz 安装包放在 /usr/local 下面,按照顺序先安装pip,再安装python.不要先安装或只安装python,否则很容易出错, cat >>pip-python ...
- 如何把本地文件上传至github?
(都说git好用,但我觉得git把我弄得像个git……在反反复复用git bash的命令行上传失败了N次之后,终于可以用命令行把文件上传到GitHub了 这中间,还要感谢网络上的各种git教程!!!) ...
- Sqlserver实现故障转移 — 加域(2)
目的:将计算机添加到域中, 域控的建立详见:https://www.cnblogs.com/xiaoerlang90/p/9224745.html 域控: 名称:dcTest.com IP: 192. ...
- SQL常见面试题(借书卡表_图书表_借书记录表)
问题描述: 本题用到下面三个关系表: CARD 借书卡: CNO 卡号,NAME 姓名,CLASS 班级 BOOKS 图书: BNO 书号,BNAME 书名,AU ...
- 配置文件 "G:\虚拟机列表\Linux001.vmx" 由产品 VMware 创建, 其版本 VMware Workstation 不兼容并且不能使用.
解析: 报这种错误一般是虚拟机文件里声明的VMware版本和真实的VMware版本不一致导致.我们可以手动更改真实VMware版本,或者更改虚拟机文件里声明的VMware版本.以下我们通过更该虚拟机文 ...
- Unity中的动画系统和Timeline(2) 按钮动画和2D精灵动画
按钮动画 1 创建按钮后,按钮的Button组件中,Transition我们平时用的时Tint,这次选择Animation 选择Auto Generate Animation,创建一个按钮动画 2 后 ...
- Linux删除命令rm
在用Linux的时候,有时分要删除一个文件夹,常常会提示次此文件非空,没法删除,这个时分,必需运用rm -rf命令.关于一些小白用户常常在运用Linux命令,会十分当心,以免搞出一些事情,下面小编将教 ...
- (5.3)mysql高可用系列——mysql复制之复制的参数
参考:https://www.iteye.com/blog/shift-alt-ctrl-2269539 详情 [1]参数 #[1.1]基本参数 bind-address=192.168.1.201 ...