P3474 [POI2008]KUP-Plot purchase
思路:单调栈
提交:>5次
错因:单调栈写法有问题+前缀和写错
题解:
若有\(>=k\ \&\&\ <=2\times k\)的点,显然直接选他就行了。
否则,我们需要找到一个矩形(不一定只有一个),并且这个矩形只包含\(<k\)的点且总权值和\(>=2k\)。
这样,我们可以尝试去切掉他的行来不断减少他的权值和。
如果发现某一行 \(>=2k\) ,我们应该去且他而不是切剩下的矩形(剩下的可能过小)。
当然如果你切着切着发现出现了一个矩形他的权值和\(>=k\ \&\&\ <=2\times k\) ,直接输出就好。
#include<bits/stdc++.h>
#define ll long long
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0; register I f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=2010;
int n,k,k2,x1,x2,y1,y2;
int up[N][N],l[N],r[N],stk[N],top;
ll a[N][N],s[N][N],mx;
inline void change(int up,int dn,int l,int r) {
R sum=s[dn][r]-s[up-1][r]-s[dn][l-1]+s[up-1][l-1];
if(sum>=k&&sum<=k2) {
printf("%d %d %d %d\n",l,up,r,dn); exit(0);
}
if(sum>mx) mx=sum,x1=up,x2=dn,y1=l,y2=r;
}
inline void solve() {
for(R i=x2;i>=x1;--i) {
register ll sum=s[i][y2]-s[i-1][y2]-s[i][y1-1]+s[i-1][y1-1];
if(sum>=k&&sum<=k2) return (void) printf("%d %d %d %d\n",y1,i,y2,i);
if(sum>k2) {
for(R p=y2;p>=y1;--p) {
sum-=a[i][p];
if(sum>=k&&sum<=k2) return (void) printf("%d %d %d %d\n",y1,i,p-1,i);
}
} mx-=sum;
if(mx>=k&&mx<=k2) return (void) printf("%d %d %d %d\n",y1,i+1,y2,x2);
}
}
inline void main() { freopen("in.in","r",stdin);
g(k),k2=k<<1,g(n); for(R i=1;i<=n;++i) for(R j=1;j<=n;++j) {
s[i][j]=g(a[i][j])+s[i][j-1]; if(a[i][j]>=k&&a[i][j]<=k2)
return (void)printf("%d %d %d %d\n",i,j,i,j);
} for(R i=1;i<=n;++i) for(R j=1;j<=n;++j) s[i][j]+=s[i-1][j];
for(R i=1;i<=n;++i) {
for(R j=1;j<=n;++j) if(a[i][j]<k) up[i][j]=up[i-1][j]+1;
stk[top=1]=0,up[i][0]=-1; for(R j=1;j<=n;++j) {
while(top&&up[i][stk[top]]>=up[i][j]) --top;
l[j]=stk[top]+1,stk[++top]=j;
} stk[top=1]=n+1,up[i][n+1]=-1;
for(R j=n;j;--j) {
while(top&&up[i][stk[top]]>=up[i][j]) --top;
r[j]=stk[top]-1,stk[++top]=j;
if(up[i][j]) change(i-up[i][j]+1,i,l[j],r[j]);
}
}
if(mx<k) return (void) puts("NIE"); solve();
}
} signed main() {Luitaryi::main(); return 0;}
2019.09.03
66
P3474 [POI2008]KUP-Plot purchase的更多相关文章
- 1127: [POI2008]KUP
1127: [POI2008]KUP https://lydsy.com/JudgeOnline/problem.php?id=1127 分析: 如果存在一个点大于等于k,小于等于2k的话,直接输出. ...
- 题解 【POI2008】KUP-Plot purchase
题面 先把题目意思讲一下吧: 给一个 \(n*n\) 的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于\([k,2k]\). 那么首先,可以想到,如果\(a[i][j]\)(格子的价格,下 ...
- [BZOJ1127][POI2008] KUP子矩阵
Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...
- bzoj1127: [POI2008]KUP
Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...
- bzoj1127[POI2008]KUP 悬线法
Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 485 Solved: 174[Submit][Status][D ...
- 解题:POI 2008 Plot purchase
题面 原来看过然后没做,结果板板把这道题改了改考掉了,血亏=.= 首先看看有没有符合条件的点.如果没有开始寻找解,先把所有的大于$2*k$的点设为坏点,然后求最大子矩形,只要一个最大子矩形的权值和超过 ...
- [BZOJ] 1127: [POI2008]KUP
似曾相识的感觉 考虑另一个判断问题,给定一个k,问这个k是否可行 存在矩形和\(sum>2k\),则该矩阵不对判定做出贡献 存在矩形和\(sum\in [k,2k]\),则我们找到了一个解 于是 ...
- bzoj 1127 [POI2008]KUP——思路(悬线法)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1127 大于2*K的视为不能选的“坏点”.有单个格子满足的就直接输出. 剩下的都是<K的 ...
- [POI2008]KUP
Description 给一个\(n\times n\)的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个\(n\times ...
随机推荐
- 【坑】使用IDEA创建maven的时候,提示缺少plugin-clean 等
解决方法 检查你的网络,能否访问 maven 中央仓库 : 在 IDEA 中是否对 maven 进行了配置 IDEA 默认使用的 仓库 和 配置文件,都是 .m2 下面的: 如果你自己对 maven ...
- C语言 - cJSON解析特定格式 含有数组array类型的数据
在ESP32中使用了cJSON库,发现很好用.最近服务器端的JSON格式越来越多样,还是有些注意点,需要做下笔记记录下来. cJSON *MAC_arry = cJSON_GetObjectItem( ...
- Turn.js 实现翻书效果(自适应单双页)
来源:https://www.cnblogs.com/hellman/p/10683492.html在上面的来源基础上增加页码显示,自适应单双页PC端效果: 移动端展示: 源码下载地址:http:// ...
- windons下一些软件的地址
idea http://download.jetbrains.8686c.com/idea/ideaIC-2018.3.1.exe
- Django入门(上)
一.Web应用程序 1.web应用程序介绍 Web应用程序是一种可以通过Web访问的应用程序,程序的最大好处是用户很容易访问应用程序,用户只需要有浏览器即可,不需要再安装其他软件. 应用程序有两种模式 ...
- JVM GC 算法原理(转)
出处: https://mp.weixin.qq.com/s/IfUFuwn8dsvMIhTS3V01FA 对于JVM的垃圾收集(GC),这是一个作为Java开发者必须了解的内容,那么,我们需要去了解 ...
- react以组件为中心的代码分割和懒加载
背景 随着项目越来越复杂,功能够越来越多,JS单个文件就会比较臃肿,js代码拆分显得必不可少. Js文件拆分主要分为按照路由进行js拆分.按照组件进行js拆分. 按照路由拆分:因为本项目请求路径得原因 ...
- tomcat端口号被占用问题
1 netstat -ano| findstr 8761 2 taskkill /f/t/im 5156
- Kafka 消息中间件
kafka简介与应用场景 Apache Kafka是分布式发布-订阅消息系统,在 kafka官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统. 它最初由LinkedIn公司开发,Link ...
- MySQL高版本默认密码查找
解决方式如下: 1:找到mysql的安装目录到跟目录下找到Data文件夹 2:打开Data/文件夹找到一个以.err结尾的文件用记事本打开,里面记录了你安装Mysql的一些日志,其中就记录了你的初始密 ...