思路:单调栈

提交:>5次

错因:单调栈写法有问题+前缀和写错

题解:

若有\(>=k\ \&\&\ <=2\times k\)的点,显然直接选他就行了。

否则,我们需要找到一个矩形(不一定只有一个),并且这个矩形只包含\(<k\)的点且总权值和\(>=2k\)。

这样,我们可以尝试去切掉他的行来不断减少他的权值和。

如果发现某一行 \(>=2k\) ,我们应该去且他而不是切剩下的矩形(剩下的可能过小)。

当然如果你切着切着发现出现了一个矩形他的权值和\(>=k\ \&\&\ <=2\times k\) ,直接输出就好。

#include<bits/stdc++.h>
#define ll long long
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0; register I f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=2010;
int n,k,k2,x1,x2,y1,y2;
int up[N][N],l[N],r[N],stk[N],top;
ll a[N][N],s[N][N],mx;
inline void change(int up,int dn,int l,int r) {
R sum=s[dn][r]-s[up-1][r]-s[dn][l-1]+s[up-1][l-1];
if(sum>=k&&sum<=k2) {
printf("%d %d %d %d\n",l,up,r,dn); exit(0);
}
if(sum>mx) mx=sum,x1=up,x2=dn,y1=l,y2=r;
}
inline void solve() {
for(R i=x2;i>=x1;--i) {
register ll sum=s[i][y2]-s[i-1][y2]-s[i][y1-1]+s[i-1][y1-1];
if(sum>=k&&sum<=k2) return (void) printf("%d %d %d %d\n",y1,i,y2,i);
if(sum>k2) {
for(R p=y2;p>=y1;--p) {
sum-=a[i][p];
if(sum>=k&&sum<=k2) return (void) printf("%d %d %d %d\n",y1,i,p-1,i);
}
} mx-=sum;
if(mx>=k&&mx<=k2) return (void) printf("%d %d %d %d\n",y1,i+1,y2,x2);
}
}
inline void main() { freopen("in.in","r",stdin);
g(k),k2=k<<1,g(n); for(R i=1;i<=n;++i) for(R j=1;j<=n;++j) {
s[i][j]=g(a[i][j])+s[i][j-1]; if(a[i][j]>=k&&a[i][j]<=k2)
return (void)printf("%d %d %d %d\n",i,j,i,j);
} for(R i=1;i<=n;++i) for(R j=1;j<=n;++j) s[i][j]+=s[i-1][j];
for(R i=1;i<=n;++i) {
for(R j=1;j<=n;++j) if(a[i][j]<k) up[i][j]=up[i-1][j]+1;
stk[top=1]=0,up[i][0]=-1; for(R j=1;j<=n;++j) {
while(top&&up[i][stk[top]]>=up[i][j]) --top;
l[j]=stk[top]+1,stk[++top]=j;
} stk[top=1]=n+1,up[i][n+1]=-1;
for(R j=n;j;--j) {
while(top&&up[i][stk[top]]>=up[i][j]) --top;
r[j]=stk[top]-1,stk[++top]=j;
if(up[i][j]) change(i-up[i][j]+1,i,l[j],r[j]);
}
}
if(mx<k) return (void) puts("NIE"); solve();
}
} signed main() {Luitaryi::main(); return 0;}

2019.09.03

66

P3474 [POI2008]KUP-Plot purchase的更多相关文章

  1. 1127: [POI2008]KUP

    1127: [POI2008]KUP https://lydsy.com/JudgeOnline/problem.php?id=1127 分析: 如果存在一个点大于等于k,小于等于2k的话,直接输出. ...

  2. 题解 【POI2008】KUP-Plot purchase

    题面 先把题目意思讲一下吧: 给一个 \(n*n\) 的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于\([k,2k]\). 那么首先,可以想到,如果\(a[i][j]\)(格子的价格,下 ...

  3. [BZOJ1127][POI2008] KUP子矩阵

    Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...

  4. bzoj1127: [POI2008]KUP

    Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...

  5. bzoj1127[POI2008]KUP 悬线法

    Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 485  Solved: 174[Submit][Status][D ...

  6. 解题:POI 2008 Plot purchase

    题面 原来看过然后没做,结果板板把这道题改了改考掉了,血亏=.= 首先看看有没有符合条件的点.如果没有开始寻找解,先把所有的大于$2*k$的点设为坏点,然后求最大子矩形,只要一个最大子矩形的权值和超过 ...

  7. [BZOJ] 1127: [POI2008]KUP

    似曾相识的感觉 考虑另一个判断问题,给定一个k,问这个k是否可行 存在矩形和\(sum>2k\),则该矩阵不对判定做出贡献 存在矩形和\(sum\in [k,2k]\),则我们找到了一个解 于是 ...

  8. bzoj 1127 [POI2008]KUP——思路(悬线法)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1127 大于2*K的视为不能选的“坏点”.有单个格子满足的就直接输出. 剩下的都是<K的 ...

  9. [POI2008]KUP

    Description 给一个\(n\times n\)的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个\(n\times ...

随机推荐

  1. 基于聚类K-Means方法实现图像分割

    ”“”K-Means to realize Image segmentation “”“ import numpy as np import PIL.Image as image from sklea ...

  2. VMware的下载与安装

    VMware的下载与安装 一.虚拟机的下载 1.进入VMware官网,点击左侧导航栏中的下载,再点击图中标记的Workstation Pro,如下图所示. 2.根据操作系统选择合适的产品,在这里以Wi ...

  3. 使用寄存器点亮LED(第2节)—寄存器映射代码讲解

    // 打开 GPIOB 端口的时钟 *( unsigned int * )0x40021018|= ( 1 << 4 ); // 配置PC2 IO口为通用推挽输出,速度为10M *( un ...

  4. JVM OOM异常会导致JVM退出吗?

    出处:  https://mp.weixin.qq.com/s/8j8YTcr2qhVActLGzOqe7Q  https://blog.csdn.net/h2604396739/article/de ...

  5. Python开发【杂货铺】:作用域的痛点

    1.块级作用域 想想此时运行下面的程序会有输出吗?执行会成功吗? #块级作用域 if 1 == 1: name = "lzl" print(name) for i in range ...

  6. Go语言学习笔记(5)——集合Map

    集合Map map是使用hash表实现的.无序的键值对的集合!只能通过key获得value,而不能通过index. map的长度不固定,和slice一样都是引用类型.len函数适用于map,返回map ...

  7. Ubuntu部署ftp服务器

    Ubuntu 16.04 FTP服务器安装及配置     FTP File Transfer Protocol文件传输协议,两台计算机传送文件的协议,客户端可以通过FTP命令从服务器下载,上传文件,修 ...

  8. node 标准输入流和输出流

    使用node 在 CMD 控制台获取输入的指令: 方式一: process.stdin.resume(); process.stdin.setEncoding('utf-8'); process.st ...

  9. ActivityMQ消息中间件【待完成】

    1,MQ的引入 使用场景,将耗时的通知业务交给消息中间件[业务逻辑进行解耦] 使用消息中间件的逻辑交互 2,MQ的应用场景 首先消息中间件是一个异步处理 有两个关键点:①耗时:②业务的耦合度 案例1: ...

  10. 记录我第一篇用Markdown写的Blog

    Markdown的介绍 喝水不忘挖井人-Markdown的创造者 Markdown 最初是由 John Gruber 和 Aaron Swartz 于 2004 年共同设计的(在这里插一句,Aaron ...