P3474 [POI2008]KUP-Plot purchase
思路:单调栈
提交:>5次
错因:单调栈写法有问题+前缀和写错
题解:
若有\(>=k\ \&\&\ <=2\times k\)的点,显然直接选他就行了。
否则,我们需要找到一个矩形(不一定只有一个),并且这个矩形只包含\(<k\)的点且总权值和\(>=2k\)。
这样,我们可以尝试去切掉他的行来不断减少他的权值和。
如果发现某一行 \(>=2k\) ,我们应该去且他而不是切剩下的矩形(剩下的可能过小)。
当然如果你切着切着发现出现了一个矩形他的权值和\(>=k\ \&\&\ <=2\times k\) ,直接输出就好。
#include<bits/stdc++.h>
#define ll long long
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0; register I f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=2010;
int n,k,k2,x1,x2,y1,y2;
int up[N][N],l[N],r[N],stk[N],top;
ll a[N][N],s[N][N],mx;
inline void change(int up,int dn,int l,int r) {
R sum=s[dn][r]-s[up-1][r]-s[dn][l-1]+s[up-1][l-1];
if(sum>=k&&sum<=k2) {
printf("%d %d %d %d\n",l,up,r,dn); exit(0);
}
if(sum>mx) mx=sum,x1=up,x2=dn,y1=l,y2=r;
}
inline void solve() {
for(R i=x2;i>=x1;--i) {
register ll sum=s[i][y2]-s[i-1][y2]-s[i][y1-1]+s[i-1][y1-1];
if(sum>=k&&sum<=k2) return (void) printf("%d %d %d %d\n",y1,i,y2,i);
if(sum>k2) {
for(R p=y2;p>=y1;--p) {
sum-=a[i][p];
if(sum>=k&&sum<=k2) return (void) printf("%d %d %d %d\n",y1,i,p-1,i);
}
} mx-=sum;
if(mx>=k&&mx<=k2) return (void) printf("%d %d %d %d\n",y1,i+1,y2,x2);
}
}
inline void main() { freopen("in.in","r",stdin);
g(k),k2=k<<1,g(n); for(R i=1;i<=n;++i) for(R j=1;j<=n;++j) {
s[i][j]=g(a[i][j])+s[i][j-1]; if(a[i][j]>=k&&a[i][j]<=k2)
return (void)printf("%d %d %d %d\n",i,j,i,j);
} for(R i=1;i<=n;++i) for(R j=1;j<=n;++j) s[i][j]+=s[i-1][j];
for(R i=1;i<=n;++i) {
for(R j=1;j<=n;++j) if(a[i][j]<k) up[i][j]=up[i-1][j]+1;
stk[top=1]=0,up[i][0]=-1; for(R j=1;j<=n;++j) {
while(top&&up[i][stk[top]]>=up[i][j]) --top;
l[j]=stk[top]+1,stk[++top]=j;
} stk[top=1]=n+1,up[i][n+1]=-1;
for(R j=n;j;--j) {
while(top&&up[i][stk[top]]>=up[i][j]) --top;
r[j]=stk[top]-1,stk[++top]=j;
if(up[i][j]) change(i-up[i][j]+1,i,l[j],r[j]);
}
}
if(mx<k) return (void) puts("NIE"); solve();
}
} signed main() {Luitaryi::main(); return 0;}
2019.09.03
66
P3474 [POI2008]KUP-Plot purchase的更多相关文章
- 1127: [POI2008]KUP
1127: [POI2008]KUP https://lydsy.com/JudgeOnline/problem.php?id=1127 分析: 如果存在一个点大于等于k,小于等于2k的话,直接输出. ...
- 题解 【POI2008】KUP-Plot purchase
题面 先把题目意思讲一下吧: 给一个 \(n*n\) 的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于\([k,2k]\). 那么首先,可以想到,如果\(a[i][j]\)(格子的价格,下 ...
- [BZOJ1127][POI2008] KUP子矩阵
Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...
- bzoj1127: [POI2008]KUP
Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...
- bzoj1127[POI2008]KUP 悬线法
Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 485 Solved: 174[Submit][Status][D ...
- 解题:POI 2008 Plot purchase
题面 原来看过然后没做,结果板板把这道题改了改考掉了,血亏=.= 首先看看有没有符合条件的点.如果没有开始寻找解,先把所有的大于$2*k$的点设为坏点,然后求最大子矩形,只要一个最大子矩形的权值和超过 ...
- [BZOJ] 1127: [POI2008]KUP
似曾相识的感觉 考虑另一个判断问题,给定一个k,问这个k是否可行 存在矩形和\(sum>2k\),则该矩阵不对判定做出贡献 存在矩形和\(sum\in [k,2k]\),则我们找到了一个解 于是 ...
- bzoj 1127 [POI2008]KUP——思路(悬线法)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1127 大于2*K的视为不能选的“坏点”.有单个格子满足的就直接输出. 剩下的都是<K的 ...
- [POI2008]KUP
Description 给一个\(n\times n\)的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个\(n\times ...
随机推荐
- C++Primer 5th Chap8 The IO Library
IO类: 头文件 类型 iostream istream,从流读取数据 ostream,向流写入数据 iostream,读写流 fstream ifstream,从文件读取数据,默认in模式打开 of ...
- LC 173. Binary Search Tree Iterator
题目描述 Implement an iterator over a binary search tree (BST). Your iterator will be initialized with t ...
- 【转载】SpringBoot yml 配置
1. 在 spring boot 中,有两种配置文件,一种是application.properties,另一种是application.yml,两种都可以配置spring boot 项目中的一些变量 ...
- 【Transact-SQL】找出不包含字母、不包含汉字的数据
原文:[Transact-SQL]找出不包含字母.不包含汉字的数据 测试的同事,让我帮忙写个sql语句,找出表中xx列不包含汉字的行. 下面的代码就能实现. IF EXISTS(SELECT * FR ...
- mysql-8.0.16-winx64的最新安装教程
最近刚学习数据库,首先是了解数据库是什么,数据库.数据表的基本操作,这就面临了一个问题,mysql的安装,我这里下载的是64位的,基于Windows的,以下是在我电脑上的安装过程,希望可以帮助到大家. ...
- wamp新建虚拟目录无法运行的解决方法
操作步骤: 打开 D:\wamp\bin\apache\apache2.4.9\conf\httpd.conf 文件,大概在第242行 把 <Directory /> AllowOver ...
- svg-sprite-loader ( svg-icon) 使用
svg-sprite-loader 可以多个svg图标合并. 使用时只需根据合并的symbol的id即可. <svg class="svg-icon" aria-hidde ...
- socket基本用法
socket介绍 1.什么是socket socket是应用层与传输层中间的一个软件抽象层,它是一组接口.它把TCP/IP这些复杂的协议统一封装起来 这样我们只要知道如何使用socket就好,就已经符 ...
- 基2时抽8点FFT的matlab实现流程及FFT的内部机理
前言 本来想用verilog描述FFT算法,虽然是8点的FFT算法,但写出来的资源用量及时延也不比调用FFT IP的好, 还是老实调IP吧,了解内部机理即可,无需重复发明轮子. 参考 https:// ...
- VMware Workstation中虚拟机与windows10共享文件夹
设置共享文件夹之前需要确定已经安装VMware Tools 1.在windows桌面新建一个名为share_folder的文件夹用来共享 2.右键点击虚拟机的名字,在弹出的菜单中选择设置 弹出对话框 ...