https://www.luogu.org/problemnew/show/U16887

$f[1] + f[2] + f[3] + .... + f[n] = f[n + 2] - 1$

矩阵快速幂求出第n+2项即可

#include <bits/stdc++.h>

using namespace std;

#define gc getchar()
#define LL long long const LL mod = ; LL n, s; inline LL read(){
LL x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} struct Node{
LL m[][];
Node() { memset(m,,sizeof m);}
void clear(){for(int i = ; i <= n; i ++) m[i][i] = ;}
}; Node operator *(Node a, Node b){
Node ret;
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
for(int k = ; k <= n; k ++)
ret.m[i][j] = (ret.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
return ret;
} Node ksm(Node a, LL p){
Node ret; ret.clear();
while(p){
if(p & ) ret = ret * a;
a = a * a;
p >>= ;
}
return ret;
} int main()
{
s = read();
s += ;
n = ;
Node a, b;
a.m[][] = ; a.m[][] = ; a.m[][] = ; a.m[][] = ;
b.m[][] = ; b.m[][] = ;
Node Ans;
Ans = ksm(a, s - );
Node answer = Ans * b;
cout << answer.m[][] - ; return ;
}

[luogu] zpl的数学题1的更多相关文章

  1. luogu 3790 文艺数学题 - 矩阵树定理 - 容斥原理

    题目传送门 戳我来传送 题目大意 给定一个图,问它的所有生成树的边权的最大公约数之和. 可以考虑计算边权的最大公约数为$i$的生成树的个数$f(i)$,最后累加答案. 然后考虑这样的生成树的个数怎么求 ...

  2. [模板]Matrix Tree定理

    结论:一个图的生成树个数等于它的度数矩阵减邻接矩阵得到的矩阵(基尔霍夫矩阵)的任意一个n-1阶主子式的行列式的绝对值 证明:不会 求法:高斯消元 例题:[HEOI2013]小Z的房间 #include ...

  3. 伯努利数学习笔记&&Luogu P3711 仓鼠的数学题

    新科技 Luogu P3711 题意 设$ S_{k,n}$表示$ \displaystyle\sum_{i=0}^n i^k$ 求多项式$\displaystyle\sum_{k=0}^n S_{k ...

  4. Luogu 1023 - 税收与补贴问题 - [数学题]

    题目链接:https://www.luogu.org/problemnew/show/P1023 题目背景每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低 ...

  5. Luogu P3768 简单的数学题

    非常恶心的一道数学题,推式子推到吐血. 光是\(\gcd\)求和我还是会的,但是多了个\(ij\)是什么鬼东西. \[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)=\sum_ ...

  6. [Luogu 3768]简单的数学题

    Description 输入一个整数n和一个整数p,你需要求出$(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p$,其中gcd(a,b)表示a与b的最大公约数. ...

  7. Luogu P5316 【恋恋的数学题】

    是个神仙题 就三种情况,分类讨论. \(k=2\): 因为保证有解,所以直接输出即可. \(k=3\): 由于对应情况可以枚举全排列寻找,所以在此只考虑顺序对应时的情况,不妨设六个数分别为\(g_{a ...

  8. 【Luogu】P3228数列(数学题)

    题目链接 考虑我们把所有的增加量拿出来做成一个序列b. 那么在所有n中开头中$1~\sum\limits_{i=1}^{k-1}b[i]$是合法的 也就是说我们枚举所有b[i],然后答案就是$n*m^ ...

  9. 【Luogu】P3768简单的数学题(杜教筛)

    题目链接 emm标题全称应该叫“莫比乌斯反演求出可狄利克雷卷积的公式然后卷积之后搞杜教筛” 然后成功地困扰了我两天qwq 我们从最基本的题意开始,一步步往下推 首先题面给出的公式是$\sum\limi ...

随机推荐

  1. TZOJ5201: 数字游戏

    #include<stdio.h> int main() { ,j=; scanf("%I64d %I64d %I64d",&n,&k,&t); ...

  2. Go语言学习笔记(10)——错误处理示例

    // 定义一个 DivideError 结构 type DivideError struct { dividee int divider int } // 实现 `error` 接口 func (de ...

  3. 2.33模型--去除字符串两头空格.c

    [注:本程序验证是使用vs2013版] #include <stdio.h> #include <stdlib.h> #include <string.h> #pr ...

  4. Kubernetes(k8s) docker 修改 /dev/shm大小

    一.问题 /dev/shm在/etc/fstab中挂载,对应tmpfs,实际使用的是内存的空间.默认情况下,/dev/shm为物理内存大小的一半. 在Kubernetes上跑docker,发现/dev ...

  5. redis设置密码,解决重启后密码丢失及自启服务配置

    一.安装redis redis3.0及redisManage管理工具 链接:https://pan.baidu.com/s/1p5EWeF2Jgsw9xOE1ADMmRg 提取码:thyf 二.red ...

  6. OAuth 2.0 简介

    是什么: 授权框架/授权标准/授权协议(授权指的是授予你能做什么的权力) 干什么: 授权 使第三方应用程序或客户端获得对HTTP服务上用户帐户信息的有限访问权限(例如 Google,GitHub ) ...

  7. win7 ReadyBoot 文件位置修改

    右键我的电脑,依次点开系统工具-性能-数据收集器集-系统-事件跟踪会话 在右边找到ReadyBoot,右键打开属性,会话框上方选择文件,根据示例文件名的路径找到ReadyBoot.etl文件,复制到你 ...

  8. vue+iview 通过a标签实现文件下载

    vue+iview 通过a标签实现文件下载 方法一: 注意: 如果下载的文件放在本地目录下,一定要将模板文件放到 public 目录下,否则由于权限问题找不到文件 路径: 项目更目录-->pub ...

  9. 【转载】Sqlserver存储过程中使用Select和Set给变量赋值

    Sqlserver存储过程是时常使用到的一个数据库对象,在存储过程中会使用到Declare来定义存储过程变量,定义的存储过程变量可以通过Set或者Select等关键字方法来进行赋值操作,使用Set对存 ...

  10. TypeScript算法与数据结构-栈篇

    本文的源码在这里,可以参考一下 栈也是一种使用非常广泛的线性数据结构,它具有后进先出last in first out的特点.通俗的例子就像我们平时一本一本的往上放书,等到我们又想用书时,我们首先接触 ...