之所以说”使用”而不是”实现”,是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了。随着对技术的逐渐掌握及积累,当类库中的算法已经无法满足自身需求的时候,我们也可以尝试通过自己的方式实现各种算法。

言归正传,什么是”最小二乘法”呢?

定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。

作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

原则:以”残差平方和最小”确定直线位置(在数理统计中,残差是指实际观察值与估计值之间的差)

数学公式:

基本思路:对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn),对于平面中的这n个点,可以使用无数条曲线来拟合。而线性回归就是要求样本回归函数尽可能好地拟合这组值,也就是说,这条直线应该尽可能的处于样本数据的中心位置。因此,选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。

实现代码如下,代码中已经详细的给了注释:

##最小二乘法
import numpy as np ##科学计算库
import scipy as sp ##在numpy基础上实现的部分算法库
import matplotlib.pyplot as plt ##绘图库
from scipy.optimize import leastsq ##引入最小二乘法算法 '''
设置样本数据,真实数据需要在这里处理
'''
##样本数据(Xi,Yi),需要转换成数组(列表)形式
Xi=np.array([6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2])
Yi=np.array([5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3]) '''
设定拟合函数和偏差函数
函数的形状确定过程:
1.先画样本图像
2.根据样本图像大致形状确定函数形式(直线、抛物线、正弦余弦等)
''' ##需要拟合的函数func :指定函数的形状
def func(p,x):
k,b=p
return k*x+b ##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的
def error(p,x,y):
return func(p,x)-y '''
主要部分:附带部分说明
1.leastsq函数的返回值tuple,第一个元素是求解结果,第二个是求解的代价值(个人理解)
2.官网的原话(第二个值):Value of the cost function at the solution
3.实例:Para=>(array([ 0.61349535, 1.79409255]), 3)
4.返回值元组中第一个值的数量跟需要求解的参数的数量一致
''' #k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1]
p0=[1,20] #把error函数中除了p0以外的参数打包到args中(使用要求)
Para=leastsq(error,p0,args=(Xi,Yi)) #读取结果
k,b=Para[0]
print("k=",k,"b=",b)
print("cost:"+str(Para[1]))
print("求解的拟合直线为:")
print("y="+str(round(k,2))+"x+"+str(round(b,2))) '''
绘图,看拟合效果.
matplotlib默认不支持中文,label设置中文的话需要另行设置
如果报错,改成英文就可以
''' #画样本点
plt.figure(figsize=(8,6)) ##指定图像比例: 8:6
plt.scatter(Xi,Yi,color="green",label="样本数据",linewidth=2) #画拟合直线
x=np.linspace(0,12,100) ##在0-15直接画100个连续点
y=k*x+b ##函数式
plt.plot(x,y,color="red",label="拟合直线",linewidth=2)
plt.legend(loc='lower right') #绘制图例
plt.show()

结果如下所示:

输出结果:

k= 0.900458420439 b= 0.831055638877
      cost:1
      求解的拟合直线为:
      y=0.9x+0.83

绘图结果:

补充说明:简单的列举了直线的情况,曲线的求解方式类似(在另一篇博文中举例了抛物线),但是曲线会存在过度拟合的情况,在以后的博客中会讲到。

机器学习:Python中如何使用最小二乘法的更多相关文章

  1. 机器学习-Python中训练模型的保存和再使用

    模型保存 BP:model.save(save_dir) SVM: from sklearn.externals import joblib joblib.dump(clf, save_dir) 模型 ...

  2. 机器学习:R语言中如何使用最小二乘法

    详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同 ...

  3. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  4. 入门系列之Scikit-learn在Python中构建机器学习分类器

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由信姜缘 发表于云+社区专栏 介绍 机器学习是计算机科学.人工智能和统计学的研究领域.机器学习的重点是训练算法以学习模式并根据数据进行预 ...

  5. 一个完整的机器学习项目在Python中演练(四)

    大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习.但是,实际情况往往d是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中.就像你的脑海中已经有了一块块" ...

  6. 一个完整的机器学习项目在Python中演练(三)

    大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习.但是,实际情况往往是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中.就像你的脑海中已经有了一块块"拼 ...

  7. 一个完整的机器学习项目在Python中的演练(二)

    大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习.但是,实际情况往往是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中.就像你的脑海中已经有了一块块"拼 ...

  8. 一个完整的机器学习项目在Python中的演练(一)

    大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习.但是,实际情况往往是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中.就像你的脑海中已经有了一块块"拼 ...

  9. R语言中如何使用最小二乘法

    R语言中如何使用最小二乘法 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题.         代码如下: > x<-c(6.19,2.51,7.29,7.01,5.7, ...

随机推荐

  1. Linux的CentOS7系统下配置LNMP

    友情提示:在执行以下操作之前,请确保您已经安装了centos7,因为以下所有操作均是在centos7下操作完成的. 1.首先要停掉本机自带的防火墙,再配置iptables,开放21/22/80/808 ...

  2. [Netty] - Netty入门(最简单的Netty客户端/服务器程序)

    Java中的NIO是一种解决阻塞式IO问题的基本技术,但是NIO的编写对java程序员是有比较高的要求的.那么Netty就是一种简化操作的一个成熟的网络IO编程框架.这里简单介绍一个程序,代码是< ...

  3. jQuery选择器课堂随笔

      $(function(){   //并集选择器   /*   $("h2,ul").css("background","pink");* ...

  4. 理解 ES6 语法中 yield 关键字的返回值

    在 ES6 中新增了生成器函数的语法,本文解释了生成器函数内 yield 关键字的返回值. 描述 根据语法规范,yield 关键字用来暂停和继续执行一个生成器函数.当外部调用生成器的 next() 方 ...

  5. 自动化测试 -- 通过Cookie跳过登录验证码

    之前写过一篇博客:自动化测试如何解决验证码的问题. http://www.cnblogs.com/fnng/p/3606934.html 介绍了验证码的几种处理方式,最后一种就是通过Cookie跳转过 ...

  6. android学习8——获取view在屏幕上的绝对坐标

    获取view在屏幕上的绝对坐标在调试时候非常有用. 看如下代码 public class AbsolutePosActivity extends Activity { @Override public ...

  7. Git建空白分支

    先执行以下命令从当前分支建一个分支,NEWBRANCH为新分支名字. git checkout --orphan NEWBRANCH 执行上面命令后,会切换到新分支.再执行命令下面命令,清空该分支(注 ...

  8. 前端项目经验总结之js防缓存(避免缓存的影响)

    一.问题描述:打包后的h5项目中有个server.js文件夹,这个文件夹有些时候用户更新了h5,但是加载的还是旧的server.js,所以怀疑是缓存的问题,为了避免缓存的影响所以要给server.js ...

  9. [Hadoop] - Cannot run program "cmake"

    在编译hadoop的过程中,遇到缺少cmake命令的异常,异常信息为:Cannot run program "cmake" (in directory "/opt/wor ...

  10. Linux 命令--查看物理CPU个数、核数、逻辑CPU个数

    # 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 # 查看物理CPU个数 cat /proc/cpuinfo| ...