With our powers combined! xgboost and pipelearner
@drsimonj here to show you how to use xgboost (extreme gradient boosting) models in pipelearner.
Why a post on xgboost and pipelearner?
xgboost is one of the most powerful machine-learning libraries, so there’s a good reason to use it. pipelearner helps to create machine-learning pipelines that make it easy to do cross-fold validation, hyperparameter grid searching, and more. So bringing them together will make for an awesome combination!
The only problem - out of the box, xgboost doesn’t play nice with pipelearner. Let’s work out how to deal with this.
Setup
To follow this post you’ll need the following packages:
# Install (if necessary)
install.packages(c("xgboost", "tidyverse", "devtools"))
devtools::install_github("drsimonj/pipelearner")
# Attach
library(tidyverse)
library(xgboost)
library(pipelearner)
library(lazyeval)
Our example will be to try and predict whether tumours are cancerous or not using the Breast Cancer Wisconsin (Diagnostic) Data Set. Set up as follows:
data_url <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data'
d <- read_csv(
data_url,
col_names = c('id', 'thinkness', 'size_uniformity',
'shape_uniformity', 'adhesion', 'epith_size',
'nuclei', 'chromatin', 'nucleoli', 'mitoses', 'cancer')) %>%
select(-id) %>% # Remove id; not useful here
filter(nuclei != '?') %>% # Remove records with missing data
mutate(cancer = cancer == 4) %>% # one-hot encode 'cancer' as 1=malignant;0=benign
mutate_all(as.numeric) # All to numeric; needed for XGBoost
d
#> # A tibble: 683 × 10
#> thinkness size_uniformity shape_uniformity adhesion epith_size nuclei
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 5 1 1 1 2 1
#> 2 5 4 4 5 7 10
#> 3 3 1 1 1 2 2
#> 4 6 8 8 1 3 4
#> 5 4 1 1 3 2 1
#> 6 8 10 10 8 7 10
#> 7 1 1 1 1 2 10
#> 8 2 1 2 1 2 1
#> 9 2 1 1 1 2 1
#> 10 4 2 1 1 2 1
#> # ... with 673 more rows, and 4 more variables: chromatin <dbl>,
#> # nucleoli <dbl>, mitoses <dbl>, cancer <dbl>
pipelearner
pipelearner makes it easy to do lots of routine machine learning tasks, many of which you can check out in this post. For this example, we’ll use pipelearner to perform a grid search of some xgboost hyperparameters.
Grid searching is easy with pipelearner. For detailed instructions, check out my previous post: tidy grid search with pipelearner. As a quick reminder, we declare a data frame, machine learning function, formula, and hyperparameters as vectors. Here’s an example that would grid search multiple values of minsplit and maxdepth for an rpart decision tree:
pipelearner(d, rpart::rpart, cancer ~ .,
minsplit = c(2, 4, 6, 8, 10),
maxdepth = c(2, 3, 4, 5))
The challenge for xgboost:
pipelearner expects a model function that has two arguments:
dataandformula
xgboost
Here’s an xgboost model:
# Prep data (X) and labels (y)
X <- select(d, -cancer) %>% as.matrix()
y <- d$cancer
# Fit the model
fit <- xgboost(X, y, nrounds = 5, objective = "reg:logistic")
#> [1] train-rmse:0.372184
#> [2] train-rmse:0.288560
#> [3] train-rmse:0.230171
#> [4] train-rmse:0.188965
#> [5] train-rmse:0.158858
# Examine accuracy
predicted <- as.numeric(predict(fit, X) >= .5)
mean(predicted == y)
#> [1] 0.9838946
Look like we have a model with 98.39% accuracy on the training data!
Regardless, notice that first two arguments to xgboost() are a numeric data matrix and a numeric label vector. This is not what pipelearner wants!
Wrapper function to parse data and formula
To make xgboost compatible with pipelearner we need to write a wrapper function that accepts data and formula, and uses these to pass a feature matrix and label vector to xgboost:
pl_xgboost <- function(data, formula, ...) {
data <- as.data.frame(data)
X_names <- as.character(f_rhs(formula))
y_name <- as.character(f_lhs(formula))
if (X_names == '.') {
X_names <- names(data)[names(data) != y_name]
}
X <- data.matrix(data[, X_names])
y <- data[[y_name]]
xgboost(data = X, label = y, ...)
}
Let’s try it out:
pl_fit <- pl_xgboost(d, cancer ~ ., nrounds = 5, objective = "reg:logistic")
#> [1] train-rmse:0.372184
#> [2] train-rmse:0.288560
#> [3] train-rmse:0.230171
#> [4] train-rmse:0.188965
#> [5] train-rmse:0.158858
# Examine accuracy
pl_predicted <- as.numeric(predict(pl_fit, as.matrix(select(d, -cancer))) >= .5)
mean(pl_predicted == y)
#> [1] 0.9838946
Perfect!
Bringing it all together
We can now use pipelearner and pl_xgboost() for easy grid searching:
pl <- pipelearner(d, pl_xgboost, cancer ~ .,
nrounds = c(5, 10, 25),
eta = c(.1, .3),
max_depth = c(4, 6))
fits <- pl %>% learn()
#> [1] train-rmse:0.453832
#> [2] train-rmse:0.412548
#> ...
fits
#> # A tibble: 12 × 9
#> models.id cv_pairs.id train_p fit target model
#> <chr> <chr> <dbl> <list> <chr> <chr>
#> 1 1 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 2 10 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 3 11 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 4 12 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 5 2 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 6 3 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 7 4 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 8 5 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 9 6 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 10 7 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 11 8 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 12 9 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> # ... with 3 more variables: params <list>, train <list>, test <list>
Looks like all the models learned OK. Let’s write a custom function to extract model accuracy and examine the results:
accuracy <- function(fit, data, target_var) {
# Convert resample object to data frame
data <- as.data.frame(data)
# Get feature matrix and labels
X <- data %>%
select(-matches(target_var)) %>%
as.matrix()
y <- data[[target_var]]
# Obtain predicted class
y_hat <- as.numeric(predict(fit, X) > .5)
# Return accuracy
mean(y_hat == y)
}
results <- fits %>%
mutate(
# hyperparameters
nrounds = map_dbl(params, "nrounds"),
eta = map_dbl(params, "eta"),
max_depth = map_dbl(params, "max_depth"),
# Accuracy
accuracy_train = pmap_dbl(list(fit, train, target), accuracy),
accuracy_test = pmap_dbl(list(fit, test, target), accuracy)
) %>%
# Select columns and order rows
select(nrounds, eta, max_depth, contains("accuracy")) %>%
arrange(desc(accuracy_test), desc(accuracy_train))
results
#> # A tibble: 12 × 5
#> nrounds eta max_depth accuracy_train accuracy_test
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 25 0.3 6 1.0000000 0.9489051
#> 2 25 0.3 4 1.0000000 0.9489051
#> 3 10 0.3 6 0.9981685 0.9489051
#> 4 5 0.3 6 0.9945055 0.9489051
#> 5 10 0.1 6 0.9945055 0.9489051
#> 6 25 0.1 6 0.9945055 0.9489051
#> 7 5 0.1 6 0.9926740 0.9489051
#> 8 25 0.1 4 0.9890110 0.9489051
#> 9 10 0.3 4 0.9871795 0.9489051
#> 10 5 0.3 4 0.9853480 0.9489051
#> 11 10 0.1 4 0.9853480 0.9416058
#> 12 5 0.1 4 0.9835165 0.9416058
Our top model, which got 94.89% on a test set, had nrounds = 25, eta = 0.3, and max_depth = 6.
Either way, the trick was the wrapper function pl_xgboost() that let us bridge xgboost and pipelearner. Note that this same principle can be used for any other machine learning functions that don’t play nice with pipelearner.
Bonus: bootstrapped cross validation
For those of you who are comfortable, below is a bonus example of using 100 boostrapped cross validation samples to examine consistency in the accuracy. It doesn’t get much easier than using pipelearner!
results <- pipelearner(d, pl_xgboost, cancer ~ ., nrounds = 25) %>%
learn_cvpairs(n = 100) %>%
learn() %>%
mutate(
test_accuracy = pmap_dbl(list(fit, test, target), accuracy)
)
#> [1] train-rmse:0.357471
#> [2] train-rmse:0.256735
#> ...
results %>%
ggplot(aes(test_accuracy)) +
geom_histogram(bins = 30) +
scale_x_continuous(labels = scales::percent) +
theme_minimal() +
labs(x = "Accuracy", y = "Number of samples",
title = "Test accuracy distribution for\n100 bootstrapped samples")

Sign off
Thanks for reading and I hope this was useful for you.
For updates of recent blog posts, follow @drsimonj on Twitter, or email me atdrsimonjackson@gmail.com to get in touch.
If you’d like the code that produced this blog, check out the blogR GitHub repository.
转自:https://drsimonj.svbtle.com/with-our-powers-combined-xgboost-and-pipelearner
With our powers combined! xgboost and pipelearner的更多相关文章
- xgboost入门与实战(原理篇)
sklearn实战-乳腺癌细胞数据挖掘 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campai ...
- xgboost原理及并行实现
XGBoost训练: It is not easy to train all the trees at once. Instead, we use an additive strategy: fix ...
- 搭建 windows(7)下Xgboost(0.4)环境 (python,java)以及使用介绍及参数调优
摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgb ...
- 在Windows10 64位 Anaconda4 Python3.5下安装XGBoost
系统环境: Windows10 64bit Anaconda4 Python3.5.1 软件安装: Git for Windows MINGW 在安装的时候要改一个选择(Architecture选择x ...
- CF Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined)
1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) B. Batch Sort 暴力枚举,水 1.题意:n*m的数组, ...
- 【原创】xgboost 特征评分的计算原理
xgboost是基于GBDT原理进行改进的算法,效率高,并且可以进行并行化运算: 而且可以在训练的过程中给出各个特征的评分,从而表明每个特征对模型训练的重要性, 调用的源码就不准备详述,本文主要侧重的 ...
- Ubuntu: ImportError: No module named xgboost
ImportError: No module named xgboost 解决办法: git clone --recursive https://github.com/dmlc/xgboost cd ...
- windows下安装xgboost
Note that as of the most recent release the Microsoft Visual Studio instructions no longer seem to a ...
- xgboost原理及应用
1.背景 关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT 地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解. 2.xgboo ...
随机推荐
- MySQL关于check约束无效的解决办法
首先看下面这段MySQL的操作,我新建了一个含有a和b的表,其中a用check约束必须大于0,然而我插入了一条(-2,1,1)的数据,其中a=-2,也是成功插入的. 所以MySQL只是check,但是 ...
- Python标准模块--importlib
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 1 模块简介 Python提供了importlib包作为标准库的一 ...
- JS - A*寻路
算法核心 A*估值算法 寻路估值算法有非常多:常用的有广度优先算法,深度优先算法,哈夫曼树等等,游戏中用的比较多的如:A*估值 算法描述 对起点与终点进行横纵坐标的运算 代码实现 start: 起点坐 ...
- Tarjan-求强连通分量
知识点-Tarjan 强连通分量:在一个图的子图中,任意两个点相互可达,也就是存在互通的路径,那么这个子图就是强连通分量(或者称为强连通分支).如果一个有向图的任意两个点相互可达,那么这个图就称为强连 ...
- ue4竖排文本显示
最近发现中国风游戏中,经常会遇到旁白文字竖着显示的需求. 于是我首先找了找控件蓝图中的text有没有相关类似横竖文本框的选项,然而并无所获. 突然间灵机一动! 竖着显示不就是每个字一换行嘛! 说干就干 ...
- JS 部分常见循环、分支、嵌套练习
图形题思路:1.确定图形一共几行,即为外层的循环次数2.确定每行有几种元素,代表有几个内层循环3.确定每种元素的个数,即为每个内层循环的次数 通常,找出每种元素个数,与行号的关系式,即为当前内层循 ...
- 树莓派安装ubuntu-server,配置镜像,安装python/mysql/samba记录
目标: 1/在raspberrypi 3B上安装ubuntu-server 2/配置好python/mysql/samba等服务,实现爬虫稳定运行我的硬件准备: 1/raspberrypi 3B 2/ ...
- 使用虚拟机CentOS7部署CEPH集群
第1章 CEPH部署 1.1 简单介绍 Ceph的部署模式下主要包含以下几个类型的节点 Ø CephOSDs: A Ceph OSD 进程主要用来存储数据,处理数据的replication,恢复 ...
- 做一个常规的banner图——负边距的使用、banner图的拼法
在这之前,首先要了解如何设置块级元素在块级元素水平居中 方法: 设置子容器为定位元素 水平居中 left:50%:margin-left:-width/2: 垂直居中 top:50%:margin-t ...
- Python生产环境部署(fastcgi,uwsgi)
Python部署web开发程序的几种方法 fastcgi ,通过flup模块来支持,在nginx里对应的配置指令是 fastcgi_pass http,nginx使用proxy_pass转发,这个要求 ...