本课主题

  • 生成器介紹和操作实战
  • 迭代器介紹和操作实战
  • 序例化和反序例化
  • Json 和 Pickle 操作实战
  • 字符串格式化的应用
  • 创建虚拟环境实战
  • 本周作业

生成器介紹和操作实战

什么是生成器,生成器是一个对象,当只有循还它的时候才会生成数据,在Python2.7 有一个 range( ) 和 xrange ( ) 函数,它们是负责生成数据的,range( ) 会直接在內存中生成一个有数据的列表,然后xrange( ) 会生成一个对象,当你循还它的时候才会生成数据,它有垃圾回收机制把没用的数据回收。

# range( )
>>> li = range(10)
>>> li
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> type(li)
<type 'list'> # xrange( )
>>> li2 = xrange(10)
>>> li2
xrange(10)
>>> type(li2)
<type 'xrange'>

Python2.7里range( ) 和 xrange( )

对于生产来说是使用函数把它创造的,只有函数里存在一个关键事: "yield" 它便叫做生成器。但执行以下程序时,其实什么都没有打印出来,因为生成器返回的是一个对象,你需要循还它的时候才会生成数据。它第一次循还的時候,会找第一个 yield 后面的值然后就停下来,第二次循还会再次找下一个 yield 后面的值,然后打印出来,直到没无再找到 yield就会终止。

>>> def func():
... print("start")
... yield 1
... yield 2
... yield 3 >>> ret = func()
>>> print(ret, type(ret))
(<generator object func at 0x100708b40>, <type 'generator'>) >>> for i in ret:
... print(i) start
1
2
3

生成器基本概念

现在可以结合 __next__( )函数来调用生成器,__next__( ) 的功能进入函数然后找到 yield,只有找到 yield 便退出,并且获取yield后面的数据,直到找不到 yield,如果没有 yield 但是你还调用 __next__( )的话便会报错!! 也可以说是保存上一次执行的位置 (默认是 Yield 后面的数据位置),当下一次再执行的时候,会在当前那个位置继续往下走。

def func():
print(111)
yield 1
print(222)
yield 2
print(333)
yield 3 ret = func()
r = ret.__next__() #进入函数找到 yield,并获取yield后面的数据
print("r:",r)
r1 = ret.__next__() #进入函数找到 yield,并获取yield后面的数据
print("r1:",r)

生成器結合__next__( )例子

動手自己寫一個生成器

具有生产能力的叫生成器,具有获取能力的叫迭代器,迭代器每一次迭代目的是取一個值

 def myrange(args):
start = 0
while True:
if start > args:
return
yield start
start += 1 r = myrange(3)
ret = r.__next__()
print(ret) # ret = r.__next__()
print(ret) # ret = r.__next__()
print(ret) # ret = r.__next__()
print(ret) #

生成器

迭代器介紹和操作实战

当你用生成器生成一个东西之后,它返回的是具有生成指定条件数据成员的一个对象,这个对象是一个可迭代的对象,然后你可以调用循还或者是__next__( )函数来获取这个对象里的值。

总结:生成器负责生成,返回的可迭代的对象叫迭代器!!!!

** Python 的 For = 其他語言的 Foreach

 import lib.common
lib.common .f1()

Module

 import sys
for file in sys.path:
print(file) #/Users/jcchoiling/PycharmProjects/s13/day5
#/Users/jcchoiling/PycharmProjects/s13
#/usr/local/Cellar/python3/3.5.1/Frameworks/Python.framework/Versions/3.5/lib/python35.zip
#/usr/local/Cellar/python3/3.5.1/Frameworks/Python.framework/Versions/3.5/lib/python3.5
#/usr/local/Cellar/python3/3.5.1/Frameworks/Python.framework/Versions/3.5/lib/python3.5/plat-darwin
#/usr/local/Cellar/python3/3.5.1/Frameworks/Python.framework/Versions/3.5/lib/python3.5/lib-dynload

Module:sys

序例化与反序例化

Json

字符串 <--> Python 的基本数据类型之间的转换

序列化 - dumps( ): 把 Python 的字典变成字符串,将 Python 基本数据类型转化成字符串形式

>>> import json
>>> dic = {"k1":"v1"}
>>> print(dic, type(dict))
{'k1': 'v1'} <class 'type'> >>> ret = json.dumps(dic) #把 Json 转换成字典
>>> print(ret, type(ret))
{"k1": "v1"} <class 'str'>

序例化

反序列化 - loads( ):把字符串转化成 Python 基本的数据类型

>>> s1 = '{"k1":"v1"}'
>>> dic = json.loads(s1)
>>> print(s1, type(s1))
{"k1":"v1"} <class 'str'> >>> print(dic, type(dic))
{'k1': 'v1'} <class 'dict'>

反序列化

不同语言之间对引号的定义都不同,有些时单引号代表字符,双引号则代表字符串,在进行序例化的时候,外面的括号必顺是单引号,里面的内容必顺是双引号,因为Json是一种可以跨平台进行信息传递的一种格式,这是确保能够在不同语言中Json 都能够进行序例化和反序例化。

>>> import json
>>> r = json.dumps([11,22,33]) # 把基本数据类型转换成字符串(序例化)
>>> print(r, type(r))
[11, 22, 33] <class 'str'> >>> li = '["alex","eric"]'
>>> ret = json.loads(li) # 把字符串转换成列表(反序例化)
>>> print(ret,type(ret))
['alex', 'eric'] <class 'list'>

综合例子

对于dumps( ) 和 loads( ) 的操作是发生在内存里,但 Json 也有一个叫 dump( )load( ) 的函数,它们主要比前面的两个函数多了一个步骤,如果是dump( )的话,它会先进行序例化(基本类型--> 字符串),然后把结果写到另外一个文件里。如果是 load( )的话,它会先把结果写进文件然后从文件里获取信息,然后进行反序例化(字符串 --> 基本类型)。

import json
li = [11,22,33]
json.dump(li,open("db","w")) #第一步:先序例代, 第二步:把序例代後的結果寫列文件裡e.g. db li = json.load(open("db","r"))
print(li,type(li))
#[11, 22, 33] <class 'list'>

dump和load的操作

Pickle

Python 的 Pickle 有特殊的序例化和反序例化功能,它也有 dumps()和 loads()的方法,Pickle 只能在 Python 語言用,序列化后返回一个 pickle 认识的字符串,它也只支持以字節的方式來操作

>>> import pickle
>>> li = [11,22,33]
>>> r=pickle.dumps(li)
>>> print(r)
b'\x80\x03]q\x00(K\x0bK\x16K!e.' >>> ret = pickle.loads(r)
>>> print(ret)
[11, 22, 33]

pickle的dumps和loads操作

>>> import pickle
>>> li = [11,22,33]
>>> r=pickle.dump(li,open("db","wb")) >>> ret = pickle.load(open("db","rb"))
>>> print(ret)
[11, 22, 33]

pickle的dump和load操作

Json 和 Pickle 的对比:

  1. Json 更适合跨平台/语言的操作
  2. Pickle 适合复杂类型的操作
    import pickle
    
    class Foo():
    def __init__(self):
    pass f = Foo()
    p = pickle.dumps(f)

    pickle dumps 一个对象

实战例子

一般来说信息之间通信是通过发送Http-request 来获取的,我给你请求你给我字符串、它们会返回一个Json形式的字符串,然后你要通过反序例化把它转换成 Python 的字典来进行下一步的操作,调用 request.get( )时会把你需要的信息,比如说请求状态、Cookie、Header, etc. 都封装到response对象里(e.g. response = request.get("http//...."),然后调用 response.text( ) 來获取这次请求返回的内容。

import requests
import json #获取天气数据API
#通过 http request 取天气的数据
response = requests.get("http://wthrcdn.etouch.cn/weather_mini?city=上海")
response.encoding = 'utf-8'
print("Before", type(response)) #把它变成字符串 #然后进行反序列化,把字符串转换成 Python 的数据类型:字典
ret = json.loads(response.text)
print("After", type(ret)) #把它由字符串变成字典
print(ret) #Before <class 'requests.models.Response'>
#After <class 'dict'> #{'status': 1000, 'data': {'city': '上海', 'yesterday': {'date': '2日星期五', 'type': '晴', 'fl': '微风', 'low': '低温 25℃', 'high': '高温 34℃', 'fx': '西风'}, 'forecast': [{'date': '3日星期六', 'type': '晴', 'low': '低温 25℃', 'high': '高温 35℃', 'fengli': '微风级', 'fengxiang': '东北风'}, {'date': '4日星期天', 'type': '多云', 'low': '低温 25℃', 'high': '高温 33℃', 'fengli': '微风级', 'fengxiang': '东北风'}, {'date': '5日星期一', 'type': '阴', 'low': '低温 24℃', 'high': '高温 32℃', 'fengli': '微风级', 'fengxiang': '东北风'}, {'date': '6日星期二', 'type': '阴', 'low': '低温 24℃', 'high': '高温 29℃', 'fengli': '微风级', 'fengxiang': '东北风'}, {'date': '7日星期三', 'type': '阵雨', 'low': '低温 23℃', 'high': '高温 29℃', 'fengli': '微风级', 'fengxiang': '东北风'}], 'ganmao': '各项气象条件适宜,发生感冒机率较低。但请避免长期处于空调房间中,以防感冒。', 'aqi': '115', 'wendu': '31'}, 'desc': 'OK'}

获取天气数据API

字符串格式化的应用

[更新中...]

创建虚拟环境实战

创建虚拟环境是有很多好处的,它可以对不同project 中的模块进行版本控制

  1. 首先是安装虚拟环境

    pip install virtualenv
  2. 进行project的目录中
    cd my_project_folder
  3. 初始化虚拟环境,venv 是虚拟环境的名称
    virtualenv venv
  4. 要开始使用虚拟环境,其需要被激活
    source venv/bin/activate
  5. 为了保持你的环境的一致性,“冷冻住(freeze)”环境包当前的状态是个好主意
    pip freeze > requirements.txt
    

Project Respository Structure

Viuflix/
|----README.txt
|----Doc/
| |----documentation.txt
|----viuflix/
| |----__init__.py
| |----foo.py
| |----bar.py
| |----utils/
| | |----__init__.py
| | |----spam.py
| | |----grok.py
|----examples/
| |----helloviuflix.py
|----tests/
| |----test_viuflix.py
|----setup.py
|----MANIFEST.in
|----requirement.txt

Viuflix project

本周作业

ATM 作業

模疑实现一个 ATM + 购物商城程序
  1. 额度15000 或自定义
  2. 实现购物商城,卖东西加入购物车,调用信用卡接口结账
  3. 可以提现,手续费 5%
  4. 每月 22号出粮,每月10号为还款日、过期未还,按欠款总额 5% 每日利息
  5. 支持多账户登录
  6. 支持账户间转账
  7. 记录每月日常流水
  8. 提供还款接口
  9. ATM记录操作日志
  10. 接供管理接口,包括添加账户,用户额度,冻结账户等
 
bin 執行文件
     atm.py start 每个程序不超过10行
     shopping.py
modules/core
conf 配置文件
     user_db
     log format
log 日志
db 
 
#实现购物商城,卖东西加入购物车,调用信用卡接口结账
 
# 记录每月日常流水
 
 
#支持账户间转账
 
 
#接供管理接口,包括添加账户,用户额度,冻结账户等
 
 
 

第五章:Python基础の生成器、迭代器、序列化和虚拟环境的应用的更多相关文章

  1. 0004-20180422-自动化第五章-python基础学习笔记

    内容回顾:1.数据类型 2.for和while循环 continue break #如下循环将怎么打印结果? for i in range(1,10): print(i) for i in range ...

  2. python基础 生成器 迭代器

    列表生成式: a=[1,2,3] print a b=[i*2 for i in range(10)] #i循环10次,每一个i的值乘2就是列表中的值.列表生成式 print b >>[1 ...

  3. (转)python基础之迭代器协议和生成器(一)

    一 递归和迭代 二 什么是迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前 ...

  4. 0003.5-20180422-自动化第四章-python基础学习笔记--脚本

    0003.5-20180422-自动化第四章-python基础学习笔记--脚本 1-shopping """ v = [ {"name": " ...

  5. [Python笔记][第一章Python基础]

    2016/1/27学习内容 第一章 Python基础 Python内置函数 见Python内置函数.md del命令 显式删除操作,列表中也可以使用. 基本输入输出 input() 读入进来永远是字符 ...

  6. 五、Python基础(2)

    五,Python基础(2) 1.数据类型基础 (一)什么是数据类型? 用于区分变量值的不同类型. (二)为何对数据分类? 针对不同状态就应该用不同类型的数据去标识. (三)数据类型分类 1.数字类型 ...

  7. Python基础之迭代器和生成器

    阅读目录 楔子 python中的for循环 可迭代协议 迭代器协议 为什么要有for循环 初识生成器 生成器函数 列表推导式和生成器表达式 本章小结 生成器相关的面试题 返回顶部 楔子 假如我现在有一 ...

  8. python基础之迭代器协议和生成器

    迭代器和生成器补充:http://www.cnblogs.com/luchuangao/p/6847081.html 一 递归和迭代 略 二 什么是迭代器协议 1.迭代器协议是指:对象必须提供一个ne ...

  9. python基础8 -----迭代器和生成器

    迭代器和生成器 一.迭代器 1.迭代器协议指的是对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前退) 2. ...

随机推荐

  1. log4j2 项目日志组件

    在项目运行过程中,常常需要进行功能调试以及用户行为的跟踪和记录,部分人习惯使用System.out,但这并不建议,它仅仅是使用方便但不便于维护也无扩展性.相比log4j的话,log4j可以控制日志信息 ...

  2. Docker笔记四:Elasticsearch实例部署

    在运行或启动elasticsearch容器前,先在宿主机上执行 sysctl -w vm.max_map_count=262144: 解决" max virtual memory areas ...

  3. [每天一个Linux小技巧] 强制让内核按单核模式启动

    在启动參数里追加 nosmp nosmp的说明例如以下: nosmp [SMP] Tells an SMP kernel to act as a UP kernel, and disable the ...

  4. 解决EJB本地调用“java.lang.ClassCastException: $Proxy96 cannot be cast to com.tgb.ejb.UserManager”异常

    EJB本地调用方式:把Webclient和EJB服务端部署到同一个JBoss,client和server通过一个JVM进行通信. Web客户端本地调用时.需引用EJB服务端打包的jar,不需引用JBo ...

  5. Android实战简易教程-第三十四枪(基于ViewPager和FragmentPagerAdapter实现滑动通用Tab)

    上一段时间写过一篇文章<基于ViewPager实现微信页面切换效果> 里面实现了相似微信Tab的页面.可是这样的实现方法有个问题.就是以后全部的代码逻辑都必须在MainActivity中实 ...

  6. iOS 从应用程序跳转到评价界面

    1,跳转到App Store: NSString *str = [NSString stringWithFormat:@"http://itunes.apple.com/us/app/id% ...

  7. 登录界面 Android简单http get请求(含server端)五 iOS端(特别篇)

    </pre><pre name="code" class="objc">NSDictionary *dict=@{@"user ...

  8. 基于低代码平台(Low Code Platform)开发中小企业信息化项目

    前言:中小企业信息化需求强烈,对于开发中小企业信息化项目的软件工作和程序员来说,如何根据中小企业的特点,快速理解其信息化项目的需求并及时交付项目,是一个值得关注和研讨的话题. 最近几年来,随着全球经济 ...

  9. java集合框架(Collections Framework)

    */ .hljs { display: block; overflow-x: auto; padding: 0.5em; color: #333; background: #f8f8f8; } .hl ...

  10. python集合增删改查,深拷贝浅拷贝

    集合 集合是无序的,不重复的数据集合,它里面的元素是可哈希的(不可变类型),但是集合本身是不可哈希(所以集合做不了字典的键)的.以下是集合最重要的两点: 去重,把一个列表变成集合,就自动去重了. 关系 ...