Description

在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴。你被这个城市发达而美丽的市场所
深深吸引,决定定居于此,做一个商人。科巴有个集市,集市用从1到N的整数编号,集市之间通过M条单向道路连
接,通过每条道路都需要消耗一定的时间。在科巴的集市上,有K种不同的商品,商品用从1到K的整数编号。每个
集市对每种商品都有自己的定价,买入和卖出商品的价格可以是不同的。并非每个集市都可以买卖所有的商品:一
个集市可能只提供部分商品的双向交易服务;对于一种商品,一个集市也可能只收购而不卖出该商品或只卖出而不
收购该商品。如果一个集市收购一种商品,它收购这种商品的数量是不限的,同样,一个集市如果卖出一种商品,
则它卖出这种商品的数量也是不限的。为了更快地获得收益,你决定寻找一条盈利效率最高的环路。环路是指带着
空的背包从一个集市出发,沿着道路前进,经过若干个市场并最终回到出发点。在环路中,允许多次经过同一个集
市或同一条道路。在经过集市时,你可以购买或者卖出商品,一旦你购买了一个商品,你需要把它装在背包里带走
。由于你的背包非常小,任何时候你最多只能持有一个商品。在购买一个商品时,你不需要考虑你是否有足够的金
钱,但在卖出时,需要注意只能卖出你拥有的商品。从环路中得到的收益为在环路中卖出商品得到的金钱减去购买
商品花费的金钱,而一条环路上消耗的时间则是依次通过环路上所有道路所需要花费的时间的总和。环路的盈利效
率是指从环路中得到的收益除以花费的时间。需要注意的是,一条没有任何交易的环路的盈利效率为0。你需要求
出所有消耗时间为正数的环路中,盈利效率最高的环路的盈利效率。答案向下取整保留到整数。如果没有任何一条
环路可以盈利,则输出0。

Input

第一行包含3个正整数N,M和K,分别表示集市数量、道路数量和商品种类数量。
接下来的N行,第行中包含2K个整数描述一个集市Bi,1 Si,1 Bi,2 Si,2...Bik Si,k。
对于任意的1<=j<=k,整数和分别表示在编号为的集市上购买、卖出编号为的商品时的交易价格。
如果一个交易价格为-1,则表示这个商品在这个集市上不能进行这种交易。
接下来M行,第行包含3个整数Vp,Wp和Tp,表示存在一条从编号为Vp的市场出发前往编号为Wp的市场的路径花费Tp分钟。
1<=N<=100,1<=M<=9900
如果在编号为的集市i中,编号为j的商品既可以购买又可以卖出则0<Si,j<=Bi,j<=10^9
对于编号为P(1<=P<=M)的道路,保证Vp<>Wp且1<=Tp<=10^7
不存在满足1<=P<Q<=M的P,Q,使得(Vp,Wp)=(Vq,Wq) 。

Output

输出包含一个整数,表示盈利效率最高的环路盈利效率,答案向下取整保留到整数。如果没
有任何一条环路可以盈利,则输出0。

Sample Input

4 5 2
10 9 5 2
6 4 20 15
9 7 10 9
-1 -1 16 11
1 2 3
2 3 3
1 4 1
4 3 1
3 1 1

Sample Output

2
在样例中,我们考虑下面两条环路,“1 - 2 - 3 - 1” 和 “1 - 4 - 3 - 1”。
考虑环路 “1 - 2 - 3 - 1” :这条环路消耗的总时间是 分钟。在这条环路中,
最佳的交易方式是:在编号为 1 的集市中购买编号为 2 的商品(花费的金钱为 5 );在编号
为 2 的集市中卖出编号为 2 的商品(得到的金钱为 15 ),然后立即购买编号为 1 的商品
(花费的金钱为 6 );带着编号为 1 的商品经过编号为 3 的集市,在回到编号为 1 的城市后
卖出(得到的金钱为 9 )。在这个环路中,总盈利为13。 这个环路的
盈利效率为13/7 ,向下取整后为 1 。
考虑环路 “1 - 4 - 3 - 1” :这条环路消耗的总时间是 分钟。在这条环路中,
最佳的交易方式是:在编号为 1 的集市中购买编号为 2 的商品(花费的金钱为 5 );在编号
为 4 的集市中卖出编号为 2 的商品(得到的金钱为 11 );然后经过编号为 3 的集市回到编
号为 1 的城市。在这个环路中,总盈利为 6。 这个环路的盈利效率为6/3 ,向
下取整后为 2 。
综上所述,盈利效率最高的环路的盈利效率为 2 。

HINT

Source

鸣谢佚名制作数据

这是apio近几年来最送的一道题了;

首先总收益/总代价明显的就是一道分数规划(这题还是挺良心的,不用实数二分)

对于分数规划,我们要落实到每一步决策上,所以我们重建一个n^2条边的图,图中的每一边都代表一个决策;

我们可以用n^2*k,处理出这n^2个决策,对于点i到点j,决策肯定是买卖最赚钱的那个物品,然后走i-j的最短路,所以每个决策的收益和代价就求出来了;

然后我们用分数规划的套路,二分答案,本来是要判正环的,但是为了复习一下floyd最小环,我反了下符号,变为floyd判是否有负环;

floyd求最小环的原理就是枚举环上编号最大的点,然后更新答案;

//MADE BY QT666
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=105;
int dis[N][N],b[N][N*10],s[N][N*10],n,m,K;
int v[N][N],w[N][N],d[N][N];
bool check(int mid){
memset(d,127/3,sizeof(d));
for(int i=1;i<=n;i++) d[i][i]=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i!=j){
d[i][j]=min(d[i][j],w[i][j]*mid-v[i][j]);
}
}
}
int ret=2147483647;
for(int k=1;k<=n;k++){
for(int i=1;i<k;i++){
for(int j=1;j<k;j++){
ret=min(ret,d[i][k]+d[k][j]+d[j][i]);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
}
}
return ret<=0;
}
int main(){
scanf("%d%d%d",&n,&m,&K);
for(int i=1;i<=n;i++){
for(int j=1;j<=K;j++){
scanf("%d%d",&b[i][j],&s[i][j]);
}
}
memset(dis,127/3,sizeof(dis));int l=0,r=0;
for(int i=1;i<=n;i++) dis[i][i]=0;
for(int i=1;i<=m;i++){
int x,y,z;scanf("%d%d%d",&x,&y,&z);r=max(r,z);
dis[x][y]=min(dis[x][y],z);
}
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i!=j){
int mx=0;
for(int k=1;k<=K;k++){
if(b[i][k]==-1||s[j][k]==-1) continue;
mx=max(mx,s[j][k]-b[i][k]);
}
v[i][j]=mx;w[i][j]=dis[i][j];
}
}
}
int ans=0;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid)) l=mid+1,ans=mid;
else r=mid-1;
}
printf("%d\n",ans);
return 0;
}

bzoj 4898: [Apio2017]商旅的更多相关文章

  1. BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划

    BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划 更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant%28zh_ ...

  2. bzoj 4898: [Apio2017]商旅【Floyd+分数规划+二分】

    其实并不会分数规划 因为要最大化 ans=总收益/总路程 ,所以考虑二分答案,找到一条 ans<=总收益/总路程 的回路.先预处理出d(i,j)为(i,j)最短路,w(i,j)为在i买某个物品在 ...

  3. [BZOJ4898] [Apio2017]商旅

    [BZOJ4898] [Apio2017]商旅 传送门 试题分析 考虑两个点之间的路径,显然如果交易的话肯定选\(S_{t,i}-B_{s,i}\)最大的. 那么我们可以先用\(Cost\)把两个点的 ...

  4. 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会

    01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...

  5. 【BZOJ4898】[Apio2017]商旅 分数规划+SPFA

    [BZOJ4898][Apio2017]商旅 Description 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个 ...

  6. [APIO2017]商旅——分数优化+floyd+SPFA判负环+二分答案

    题目链接: [APIO2017]商旅 枚举任意两个点$(s,t)$,求出在$s$买入一个物品并在$t$卖出的最大收益. 新建一条从$s$到$t$的边,边权为最大收益,长度为原图从$s$到$t$的最短路 ...

  7. BZOJ 4898 Luogu P3778 [APIO2017]商旅 (分数规划、最短路)

    题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4898 (luogu)https://www.luogu.org/probl ...

  8. BZOJ4898 & BZOJ5367 & 洛谷3778:[APIO2017]商旅——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4898 https://www.lydsy.com/JudgeOnline/problem.php? ...

  9. bzoj4898 & loj2308 [Apio2017]商旅 最短路+01分数规划

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4898 https://loj.ac/problem/2308 题解 发现我们可以把整个环路分成 ...

随机推荐

  1. LINQ学习系列-----2.1 一个Linq语句

    Linq语句介绍 先上源码: 上述代码涵盖了Linq新特性: 代码解析: 针对本文中的几点特性,前面有文章进行阐述.

  2. js之ECMAscript

    1.基本数据类型和一些运算 <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...

  3. css选择器的优先级问题

    当我们写页面的时候,不知道你会不会产生这样的问题,为什么我给他添加的这条样式分明已经选择到我要给的元素了,但是他的样式并没有生效,那是为什么呢? 定义的属性有冲突时,浏览器会选择用那一套样式呢,下面来 ...

  4. django-Ajax发送POST请求(csrf跨站请求的三种方式),文件的上传

    第一种 <script> $(".eq").on("click",function () { $.ajax({ url:"/eq/&quo ...

  5. Swift 线程安全数组

    欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:BigNerdCoding 有并发的地方就存在线程安全问题,尤其是对于 Swift 这种还没有内置并发支持的语言来说线程安全问题更为突出 ...

  6. Scala入门系列(九):函数式编程

    引言 Scala是一门既面向对象,又面向过程的语言,Scala的函数式编程,就是Scala面向过程最好的佐证.也真是因此让Scala具备了Java所不具备的更强大的功能和特性. 而之所以Scala一直 ...

  7. COM组件转换为.NET元数据

    .net开发中,需要调用一些COM组件,COM组件的元素转化为.net的元数据后才能很好的调用. 下面贴出我转的过程. 首先,打开C:\Program Files (x86)\Microsoft SD ...

  8. C# DateDateTimePicker设置属性ShowCheckBox为True

    DateDateTimePicker的属性ShowCheckBox为True后,可以使用时间控件的复选框. 但是如果,你想设置CheckBox的选中状态为False的话,那么请注意赋时间值和赋状态值的 ...

  9. Codeforces 850C Arpa and a game with Mojtaba

    题意:给定一个正整数序列,两人轮流对这个数列进行如下修改:选取一个素数p和一个整数k将序列中能整除p^k的数除以p^k,问谁有必胜策略. 借此复习一下sg函数吧,sg(x) = mex ( sg(y) ...

  10. Java开发小技巧(一)

    前言 相信许多程序员在看别人写的代码的时候,会有怀疑人生的感想,面对一堆天书一样的代码,很难摸清作者的思路,最后选择了重构,如果你认同上面这个作法,说明了两个问题:要么原来的开发者技术菜.要么你技术菜 ...