Flying Saw debug

Part1 Encoder extrapolation

Machine introduction

A tube cutting saw, is working for cut tube to length in line.

A measuring wheel measures the position of the tube, when cutlength reached the moving table gearon with the measuring wheel. When the table and measuring wheel synchronized, the saw blade start cut. After cut finished or the moving table reach back position, the table pos back to start position.

This machine is controlled by siemens simotionD motion controller.The program is written by other engineer, after using for several month , user find some problems. I am in charge for on site commissioning.

max line speed : 80m/min

Problem1: cut length out of tolarence when accelaration and deceleration

Appearance:

When acceleration, actual cut length longer than set length.When deceleration, actual cut length shorter than set length. The length different could bigger than 10mm.

Analyze:

If an axis gearing/camming with another axis(or encoder), assume the gearing ratio is 1:1 and every parameter is default value. The slave position will always behind master position, because there is delay in the control loops.

I check the program, and find the encoder has set position filter. As encoder is the master of the carriage, because there is some ocillation is the tube, using position filter is a good solution. The position filter in this project is 20ms + 20ms.

Position filter has a good affect that the speed is smooth, and a bad affect that the filtered position is lagged behind the actual position.

Position delayed  = encoderVelocity x filterTime

Extrapolation

There is several solution to handle the position difference. Extrapolation is an easy and effective method.

Extrapolation position
= positionBeforeExtrapolation + ExtrapolationVelocity x ExtrapolationTime Extrapolation velocity = differential(Extrapolation position)

The graph below is extrapolation signal flow. In the middle of graph, is extrapolation time. Before extrapolation ,there is a position filter in position channel , and a velocity filter in velocity channel. These two filter only effective when extrapolation time bigger than 0.

Extrapolation setting method

Step 1:

In the FlyingSaw Axis interconnections, select "Actual value with extrapolation" of encoder.

Step 2: set extrapolation velocity filter

I prefer "mean value filter" than the "pt1/pt2" filter.

velocity filter time could be 0.1 to 0.2s. This filter is very important, a smooth velocity ensured the extrapolation value is stable.

Step 3:

how long the extropolation time should be? experience should related to the system delay time. So I can write an equation here.

extrapolation time ≈ Positionfiltertime + 2*ipo_time
= 20ms + 20ms + 2ms = 42ms (in this project)

If you are not sure about the filter time, then try a smaller value, like 70% of the calulated value.


Result

After implement extrapolation, the cutting accuracy at acceleration and deceleration is much better, length different less than 2mm.

Motion control encoder extrapolation的更多相关文章

  1. V-rep学习笔记:Reflexxes Motion Library 1

    V-REP中集成了在线运动轨迹生成库Reflexxes Motion Library Type IV,目前Reflexxes公司已经被谷歌收购.(The Reflexxes Motion Librar ...

  2. The Enginer sample Test for GD temperature control (FCT, ATE, NPI,SMT, )

    For me it is a day of grief.................... 1 Communication with customer test methods. notes: T ...

  3. 【论文阅读】Motion Planning through policy search

    想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔 ...

  4. 周期同步位置模式(CSP),轮廓位置模式(PPM),位置模式(PM)

    什么是运动控制? 运动控制就是通过机械传动装置对运动部件的位置.速度进行实时的控制管理,使运动部件按照预期的轨迹和规定的运动参数(如速度.加速度参数等)完成相应的动作. 运动控制系统的典型构成 1. ...

  5. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  6. VES Hand Book Contents

    3...ABOUT THE VES4...Foreword 6...Chapter 1......Introduction6......Visual Effects and Special Effec ...

  7. Digests from CG articales

    Turtle Talk Prior to the on-set motion capture, the team had the actors perform expressions while be ...

  8. 读书笔记-Autonomous Intelligent Vehicles(一)

    Autonomous intelligent vehicles have to finish the basic procedures: perceiving and modeling environ ...

  9. jquery和css自定义video播放控件

    下面介绍一下通过jquery和css自定义video播放控件. Html5 Video是现在html5最流行的功能之一,得到了大多数最新版本的浏览器支持.包括IE9,也是如此.不同的浏览器提供了不同的 ...

随机推荐

  1. POJ3660 Cow Contest floyd传递闭包

    Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming con ...

  2. ASP.NET Core MVC – 自定义 Tag Helpers

    ASP.NET Core Tag Helpers系列目录,共四篇: ASP.NET Core MVC Tag Helpers 介绍 ASP.NET Core MVC – Caching Tag Hel ...

  3. txt文件怎么设置默认打开是用这个EditPlus软件打开

    1.如果是正常安装的Editplus,只需要右击“txt文件”,在“打开方式”中选择“打开程序”,再点击“浏览”,找到“Editplus”打开,再将“始终使用选择的程序打开这种文件”前面的“口”选中, ...

  4. Python2和Python3的一些语法区别

    Python2和Python3的一些语法区别 python 1.print 在版本2的使用方法是: print 'this is version 2 也可以是 print('this is versi ...

  5. python基础之数据类型与变量

    一.变量 1 什么是变量之声明变量 #变量名=变量值age=18gender1='male' gender2='female' 2 为什么要有变量 变量作用:"变"=>变化, ...

  6. 关于Java中面向对象章节、IO 流中的重点基础知识。

    一.面向对象的三大特征,以及作用. 答:面向对象的三大特征即,封装性.继承性.多态性. 其分别的作用为 : 封装作用:将数据封装起来,提高数据的安全性, 继承作用:提高代码的复用性,减少冗余代码. 多 ...

  7. 压缩感知中的数学知识:稀疏、范数、符号arg min

    转自:http://blog.csdn.net/jbb0523/article/details/40262629 1.稀疏:什么是K稀疏呢? 在压缩感知里经常提到 "K稀疏" 的概 ...

  8. LINQ to Entities 中的查询

    MSDN地址:https://msdn.microsoft.com/zh-cn/library/bb399367%28v=vs.100%29.aspx .NET Framework 4 查询是一种从数 ...

  9. 通过maven test 报org.apache.ibatis.binding.BindingException: Invalid bound statement

    背景 直接使用eclipse工具去执行,没有问题,通过testng.xml去执行,没有问题,但通过mvn clean test执行,就报错,提示org.apache.ibatis.binding.Bi ...

  10. Linux 命令大全之Red Hat 7常用命令总结二

    Linux 命令大全之RedHat7常用命令笔记... ----------------------------------------------------- 征服Linux从终端开始 ----- ...