使用spark对hive表中的多列数据判重
本文处理的场景如下,hive表中的数据,对其中的多列进行判重deduplicate。
1、先解决依赖,spark相关的所有包,pom.xml
spark-hive是我们进行hive表spark处理的关键。
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.6.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.19</version>
</dependency>
</dependencies>
2、spark-client
package com.xiaoju.kangaroo.duplicate; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.hive.HiveContext; import java.io.Serializable; public class SparkClient implements Serializable{
private SparkConf sparkConf;
private JavaSparkContext javaSparkContext; public SparkClient() {
initSparkConf();
javaSparkContext = new JavaSparkContext(sparkConf);
} public SQLContext getSQLContext() {
return new SQLContext(javaSparkContext);
} public HiveContext getHiveContext() {
return new HiveContext(javaSparkContext);
} private void initSparkConf() {
try {
String warehouseLocation = System.getProperty("user.dir");
sparkConf = new SparkConf()
.setAppName("duplicate")
.set("spark.sql.warehouse.dir", warehouseLocation)
.setMaster("yarn-client");
} catch (Exception ex) {
ex.printStackTrace();
}
} }
3、判重流程
package com.xiaoju.kangaroo.duplicate; import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.hive.HiveContext;
import scala.Tuple2; import java.io.Serializable;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; public class SparkDuplicate implements Serializable { private transient SparkClient sparkClient;
private transient HiveContext hiveContext;
private String db;
private String tb;
private String pt;
private String cols; public SparkDuplicate(String db, String tb, String pt, String cols) {
this.db = db;
this.tb = tb;
this.pt = pt;
this.cols = cols;
this.sparkClient = new SparkClient();
this.hiveContext = sparkClient.getHiveContext();
} public void duplicate() {
String partition = formatPartition(pt);
String query = String.format("select * from %s.%s where %s", db ,tb, partition);
System.out.println(query);
DataFrame rows = hiveContext.sql(query);
JavaRDD<Row> rdd = rows.toJavaRDD();
Map<String, Integer> repeatRetMap = rdd.flatMap(new FlatMapFunction<Row, String>() {
public Iterable<String> call(Row row) throws Exception {
HashMap<String, Object> rowMap = formatRowMap(row);
List<String> sList = new ArrayList<String>();
String[] colList = cols.split(",");
for (String col : colList) {
sList.add(col + "@" + rowMap.get(col));
}
return sList;
}
}).mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<String, Integer>(s, 1); }
}).reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer integer, Integer integer2) throws Exception {
return integer + integer2;
}
}).map(new Function<Tuple2<String,Integer>, Map<String, Integer>>() {
public Map<String, Integer> call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
Map<String, Integer> retMap = new HashMap<String, Integer>();
if (stringIntegerTuple2._2 > 1) {
retMap.put(stringIntegerTuple2._1, stringIntegerTuple2._2);
}
return retMap;
}
}).reduce(new Function2<Map<String, Integer>, Map<String, Integer>, Map<String, Integer>>() {
public Map<String, Integer> call(Map<String, Integer> stringIntegerMap, Map<String, Integer> stringIntegerMap2) throws Exception {
stringIntegerMap.putAll(stringIntegerMap2);
return stringIntegerMap;
}
}); for (Map.Entry<String, Integer> entry : repeatRetMap.entrySet()) {
if (entry.getValue() > 1) {
System.out.println("重复值为:" + entry.getKey() + ", 重复个数" + entry.getValue());
}
}
} private String formatPartition(String partition) {
String format = "";
if (partition.startsWith("pt") || partition.startsWith("dt")) {
String[] items = partition.split("=");
for (int i = 0; i < items.length; i++) {
if (items[i].equals("pt") || items[i].equals("dt")) {
format += items[i];
} else {
format += "='" + items[i] + "'";
}
}
} else {
String[] keys;
if (partition.contains("w=")){
keys = new String[] {"year", "week"};
partition = partition.replace("w=", "");
}
else{
keys = new String[] {"year","month","day", "hour"};
}
String[] items = partition.split("/");
for(int i=0; i<items.length; i++) {
if (i == items.length-1) {
format += keys[i] + "='" + items[i] + "'";
} else {
format += keys[i] + "='" + items[i] + "' and ";
}
}
}
return format;
} private HashMap<String, Object> formatRowMap(Row row){
HashMap<String, Object> rowMap = new HashMap<String, Object>();
try {
for (int i=0; i<row.schema().fields().length; i++) {
String colName = row.schema().fields()[i].name();
Object colValue = row.get(i);
rowMap.put(colName, colValue); }
}catch (Exception ex) {
ex.printStackTrace();
}
return rowMap;
} public static void main(String[] args) {
String db = args[0];
String tb = args[1];
String pt = args[2];
String cols = args[3];
SparkDuplicate sparkDuplicate = new SparkDuplicate(db, tb, pt, cols);
sparkDuplicate.duplicate();
}
}
4、运行方式
提交任务脚本
#!/bin/bash
source /etc/profile
source ~/.bash_profile
db=$
table=$
partition=$
cols=$
spark-submit \
--queue=root.zhiliangbu_prod_datamonitor \
--driver-memory 500M \
--executor-memory 13G \
--num-executors \
spark-duplicate-1.0-SNAPSHOT-jar-with-dependencies.jar ${db} ${table} ${partition} ${cols}
运行:
sh run.sh gulfstream_ods g_order // area,type
结果
重复值为:area@, 重复个数225
重复值为:area@, 重复个数7398
重复值为:area@, 重复个数69823
重复值为:area@, 重复个数98317
重复值为:area@, 重复个数91775
重复值为:area@, 重复个数72053
重复值为:area@, 重复个数2362
重复值为:area@, 重复个数264487
重复值为:area@, 重复个数2927
重复值为:area@, 重复个数230484
重复值为:area@, 重复个数87527
重复值为:area@, 重复个数74987
重复值为:area@, 重复个数130297
重复值为:area@, 重复个数24463
重复值为:area@, 重复个数15699
重复值为:area@, 重复个数13517
重复值为:area@, 重复个数4774
重复值为:area@, 重复个数5022
重复值为:area@, 重复个数6737
重复值为:area@, 重复个数12705
重复值为:area@, 重复个数18961
重复值为:area@, 重复个数20715
重复值为:area@, 重复个数15179
重复值为:area@, 重复个数1276
重复值为:area@, 重复个数31664
重复值为:area@, 重复个数61261
重复值为:area@, 重复个数32496
重复值为:area@, 重复个数55877
重复值为:area@, 重复个数40933
重复值为:area@, 重复个数32564
重复值为:area@, 重复个数300
重复值为:area@, 重复个数21405
重复值为:area@, 重复个数37696
重复值为:area@, 重复个数212
重复值为:area@, 重复个数12442
重复值为:area@, 重复个数2526
重复值为:area@, 重复个数17456
重复值为:area@, 重复个数12688
重复值为:area@, 重复个数17285
重复值为:area@, 重复个数11511
重复值为:area@, 重复个数6622
重复值为:area@, 重复个数9573
重复值为:area@, 重复个数2416
重复值为:area@, 重复个数8109
重复值为:area@, 重复个数27915
重复值为:area@, 重复个数58942
重复值为:area@, 重复个数18842
重复值为:area@, 重复个数3482
重复值为:area@, 重复个数31452
重复值为:area@, 重复个数11436
重复值为:area@, 重复个数656
重复值为:area@, 重复个数31557
重复值为:area@, 重复个数1726
重复值为:type@, 重复个数288479
重复值为:type@, 重复个数21067365
使用spark对hive表中的多列数据判重的更多相关文章
- 使用spark将内存中的数据写入到hive表中
使用spark将内存中的数据写入到hive表中 hive-site.xml <?xml version="1.0" encoding="UTF-8" st ...
- 将DataFrame数据如何写入到Hive表中
1.将DataFrame数据如何写入到Hive表中?2.通过那个API实现创建spark临时表?3.如何将DataFrame数据写入hive指定数据表的分区中? 从spark1.2 到spark1.3 ...
- Spark 读写hive 表
spark 读写hive表主要是通过sparkssSession 读表的时候,很简单,直接像写sql一样sparkSession.sql("select * from xx") 就 ...
- [Spark][Hive][Python][SQL]Spark 读取Hive表的小例子
[Spark][Hive][Python][SQL]Spark 读取Hive表的小例子$ cat customers.txt 1 Ali us 2 Bsb ca 3 Carls mx $ hive h ...
- Hive表中Partition的创建
作用: 在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据,在对应的partition里面去查找就可以,减少查询时间. 1. 创建表 ...
- sqoop导入数据到hive表中的相关操作
1.使用sqoop创建表并且指定对应的hive表中的字段的数据类型,同时指定该表的分区字段名称 sqoop create-hive-table --connect "jdbc:oracle: ...
- 如何将hive表中的数据导出
近期经常将现场的数据带回公司测试,所以写下该文章,梳理一下思路. 1.首先要查询相应的hive表,比如我要将c_cons这张表导出,我先查出hive中是否有这张表. 查出数据,证明该表在hive中存在 ...
- 20.采集项目流程篇之清洗数据绑定到hive表中
先启动hive 在mydb2这个数据库中创建表: create external table mydb2.access(ip string,day string,url string,upflow s ...
- 11.把文本文件的数据导入到Hive表中
先在hive里面创建一个表 create table mydb2.t3(id int,name string,age int) row format delimited fields terminat ...
随机推荐
- 201521123019 《Java程序设计》第8周学习总结
1. 本章学习总结 2. 书面作业 一.List中指定元素的删除(题目4-1) for (int i = list.size()-1; i >=0; i--) {//从最后一个元素开始删除 if ...
- 201521123013 《Java程序设计》第7周学习总结
1. 本章学习总结 2. 书面作业 Q1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 public boolean contains(Object o) { r ...
- 201521123038 《Java程序设计》 第十一周学习总结
201521123038 <Java程序设计> 第十一周学习总结 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多 ...
- PHP面向对象简单总结
类和对象对象:一切东西都可以看做对象,对象是类的实例化.类:类是对象的抽象,用来描述众多对象共有的特征. 定义类 class成员变量 和 成员方法访问修饰符 public共有的 private 私有的 ...
- Eclipse rap 富客户端开发总结(7) : 如何修改rap的样式
1. Rap样式原理 Rap的界面样式目前是以css来配置的,程序启动后加载相应的css配置文件再对组件进行样式设置,界面上的所有组件 Label button composit等的样式最开始都是通 ...
- python 实现文本文件中的数字按序排序(位操作,低内存占用)
文本文件内容 ./txt 3241155299893344 处理代码: import sys a = bytearray(b'') for i in range(100): a.append(or ...
- ACM退役记&&回忆录
ACM退役记 2017.9.19星期二,"九一八事变"八十六年后的第二天,永远记住这个日子,刚好是我报名ACM到现在,刚好满一年,而今天正是我注册杭州电子科技大学OJ的时间(就是这 ...
- SpringMVC基础入门,创建一个HelloWorld程序
ref:http://www.admin10000.com/document/6436.html 一.SpringMVC基础入门,创建一个HelloWorld程序 1.首先,导入SpringMVC需要 ...
- 全面了解Android热修复技术
WeTest 导读 本文探讨了Android热修复技术的发展脉络,现状及其未来. 热修复技术概述 热修复技术在近年来飞速发展,尤其是在InstantRun方案推出之后,各种热修复技术竞相涌现.国内大部 ...
- servlet文件上传2——复合表单提交(数据获取和文件上传)
上传文件时表单enctype属性必须要更改为<enctype='multipart/form-data'>:采用post提交表单,元素需要有name属性: 利用第三方jar包(common ...