[刷题]Codeforces 785D - Anton and School - 2
Description
As you probably know, Anton goes to school. One of the school subjects that Anton studies is Bracketology. On the Bracketology lessons students usually learn different sequences that consist of round brackets (characters “(” and “)” (without quotes)).
On the last lesson Anton learned about the regular simple bracket sequences (RSBS). A bracket sequence s of length n is an RSBS if the following conditions are met:
It is not empty (that is n ≠ 0).
The length of the sequence is even.
First charactes of the sequence are equal to “(“.
Last charactes of the sequence are equal to “)”.
For example, the sequence “((()))” is an RSBS but the sequences “((())” and “(()())” are not RSBS.
Elena Ivanovna, Anton’s teacher, gave him the following task as a homework. Given a bracket sequence s. Find the number of its distinct subsequences such that they are RSBS. Note that a subsequence of s is a string that can be obtained from s by deleting some of its elements. Two subsequences are considered distinct if distinct sets of positions are deleted.
Because the answer can be very big and Anton’s teacher doesn’t like big numbers, she asks Anton to find the answer modulo 109 + 7.
Anton thought of this task for a very long time, but he still doesn’t know how to solve it. Help Anton to solve this task and write a program that finds the answer for it!
Input
The only line of the input contains a string s — the bracket sequence given in Anton’s homework. The string consists only of characters “(” and “)” (without quotes). It’s guaranteed that the string is not empty and its length doesn’t exceed 200 000.
Output
Output one number — the answer for the task modulo 109 + 7.
Examples
input
)(()()
output
6
input
()()()
output
7
input
)))
output
0
Note
In the first sample the following subsequences are possible:
If we delete characters at the positions 1 and 5 (numbering starts with one), we will get the subsequence “(())”.
If we delete characters at the positions 1, 2, 3 and 4, we will get the subsequence “()”.
If we delete characters at the positions 1, 2, 4 and 5, we will get the subsequence “()”.
If we delete characters at the positions 1, 2, 5 and 6, we will get the subsequence “()”.
If we delete characters at the positions 1, 3, 4 and 5, we will get the subsequence “()”.
If we delete characters at the positions 1, 3, 5 and 6, we will get the subsequence “()”.
The rest of the subsequnces are not RSBS. So we got 6 distinct subsequences that are RSBS, so the answer is 6.
Key
题意:给一大串前后括号组成的字符串,长度为n,从中任取若干括号、按原顺序排列,要求取出的括号前一半都是“(”,后一半都是”)“,问有多少种组合(即组成如((((())))))。如)(()() (没个括号分别编号1~6),有2 4、2 6、3 4、3 6、5 6、2 3 4 6 6种。
事后看了题解才AC。很容易想到的是,读取时只存储每一个后括号之前一共有多少个前括号,例如)(()(),有三个后括号,只需存储0 2 3即可(对该数组命名为sum,并假设一共m个后括号)。然后遍历这个sum数组:对于第i个后括号,左侧有sum[i]个前括号,右侧有m-i个后括号(方便起见令ai=sum[i],bi=m-i),以当前后括号为第一个符合符合“((((()))))”的后括号,则当前后括号左侧的后括号都不可能满足,当前后括号右侧的前括号也不满足。则“以当前后括号为第一个符合的后括号”一共有
注意a指的是当前后括号左侧的前括号个数,b为当前的后括号右侧后括号个数,故b不包括当前后括号。
最后根据范德蒙恒等式推倒:
若min(ai−1,bi)=ai−1:
若min(ai,bi+1)=bi+1:
合起来还是Cmin(ai,bi)ai+bi
那么最终要做的就是把m个组合数求和。因而求组合数也是个难点。这里直接盗用了上面链接的大神的模板。自己写了个求组合数的博客。这里还是预先打表了,这样快很多。
Code
#include<cstdio>
#include<iostream>
#include<string>
#include<algorithm>
#define MX 200005
using namespace std;
typedef long long LL;
const int p = 1e9 + 7;
int sum[MX] = { 0 }; // store the sum of all the '(' before the last ')'
LL ans = 0;
LL fac[200005], fac_exp[200005];
LL ModExp(LL a, LL b, LL p)
{
LL ans = 1;
while (b)
{
if (b & 1)
ans = ans*a%p;
a = a*a%p;
b >>= 1;
}
return ans;
}
LL C(int n, int m)
{
return fac[n] % p * fac_exp[n - m] % p * fac_exp[m] % p;
}
int main()
{
fac[0] = fac_exp[0] = 1;
for (int i = 1;i <= 200000;i++)
{
fac[i] = (fac[i - 1] * i) % p;
fac_exp[i] = ModExp(fac[i], p - 2, p);
}
//freopen("in.txt", "r", stdin);
string s;
getline(cin, s);
int num_left = 0, num_right = 0;
for (char c : s) {
if (c == '(') ++num_left;
else {
sum[num_right + 1] = sum[num_right] + num_left;
++num_right;
num_left = 0;
}
}
for (int i = 1;i <= num_right;++i) {
int right = num_right - i + 1;
int left = sum[i];
ans += C(right - 1 + left, right);
}
cout << (int)(ans%p);
return 0;
}
[刷题]Codeforces 785D - Anton and School - 2的更多相关文章
- [刷题]Codeforces 794C - Naming Company
http://codeforces.com/contest/794/problem/C Description Oleg the client and Igor the analyst are goo ...
- Codeforces 785D Anton and School - 2 (组合数相关公式+逆元)
D. Anton and School - 2 time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- [刷题codeforces]650A.637A
650A Watchmen 637A Voting for Photos 点击查看原题 650A又是一个排序去重的问题,一定要注意数据范围用long long ,而且在写计算组合函数的时候注意也要用l ...
- [刷题codeforces]651B/651A
651B Beautiful Paintings 651A Joysticks 点击可查看原题 651B是一个排序题,只不过多了一步去重然后记录个数.每次筛一层,直到全为0.从这个题里学到一个正确姿势 ...
- [刷题]Codeforces 786A - Berzerk
http://codeforces.com/problemset/problem/786/A Description Rick and Morty are playing their own vers ...
- [刷题]Codeforces 746G - New Roads
Description There are n cities in Berland, each of them has a unique id - an integer from 1 to n, th ...
- Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]
题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...
- CF刷题-Codeforces Round #481-G. Petya's Exams
题目链接:https://codeforces.com/contest/978/problem/G 题目大意:n天m门考试,每门考试给定三个条件,分别为:1.可以开始复习的日期.2.考试日期.3.必须 ...
- CF刷题-Codeforces Round #481-F. Mentors
题目链接:https://codeforces.com/contest/978/problem/F 题目大意: n个程序员,k对仇家,每个程序员有一个能力值,当甲程序员的能力值绝对大于乙程序员的能力值 ...
随机推荐
- MVC学习笔记1-MVC家族间的区别
ASP.NET下的MVC从原始的1.0走到2.0,再到3.0,现在走到4.0,也许明年5.0就问世了,先不管那些,那说说这些MVC在ASP.NET是如何变化发展的.对于.net编程人员来说可能会很熟悉 ...
- 运用google-protobuf的IM消息应用开发(前端篇)
前言: 公司原本使用了第三方提供的IM消息系统,随着业务发展需要,三方的服务有限,并且出现问题也很难处理和排查,所以这次新版本迭代,我们的server同事呕心沥血做了一个新的IM消息系统,我们也因此配 ...
- 【前端童鞋看过来!】给大家分享网盘里前端相关书籍,主要是和网络通信(HTTP/TCP/IP)及javascript相关的
百度云链接:https://pan.baidu.com/s/1kUPdf5H(无密码) 截图: <HTTP权威指南> [豆瓣书评]:此书第一部分是HTTP的概略,如果你没有时间,通读第一部 ...
- JS中new的运行方式
---恢复内容开始--- 在JS中,有两个基础原型,分别是Function.prototype和Object.prototype.这两个原型组成了JS中的所有实例他们的关系是 Function.pro ...
- 老李分享:走读unittest源码
老李分享:走读unittest源码 poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.poptest测试开发工程师就业培训感兴趣 ...
- 解析新浪微博表情包的一套js代码
本文出自本人原创,转载请注明出处 /** * Created by Lemon on 2017/4/6. *//** * return 解析后的值 * analysis 参数 * obj.value: ...
- Linux命令的复习总结学习
1.-------------------------linux系统介绍------------------------------------------------------- Linux是一套 ...
- dotNet的体系结构介绍
一.公共语言运行库 .NET Framework 的核心是其运行库执行环境,称为Common Language Run,通常在CLR控制下运行的代码称为托管代码(由GC进行资源管理和回收),还有一部分 ...
- 关于css解决俩边等高的问题
前段时间公司需哦一个后台管理系统,左侧是导航栏,右侧是content区域.然厚刚开始用的是js 去控制的,但是当页面的椰蓉过长的时候,有与js单线程,加载比较慢,就会有那么一个过程,查找了很多的方法都 ...
- 用Rvm安装Ruby,Rails运行环境及常见错误解决方法
一.安装Rvm 1.下载安装Rvm $ curl -L https://get.rvm.io | bash -s stable 此时可能出现错误:"gpg: 无法检查签名:找不到公钥&quo ...