Kickstart Round D 2017 problem A sightseeing 一道DP
这是现场完整做出来的唯一一道题Orz。。而且还调了很久的bug。还是太弱了。

Problem
When you travel, you like to spend time sightseeing in as many cities as possible, but sometimes you might not be able to because you need to catch the bus to the next city. To maximize your travel enjoyment, you decide to write a program to optimize your schedule.
You begin at city 1 at time 0 and plan to travel to cities 2 to N in ascending order, visiting every city. There is a bus service from every city i to the next city i + 1. The i-th bus service runs on a schedule that is specified by 3 integers: Si, Fi and Di, the start time, frequency and ride duration. Formally, this means that there is a bus leaving from city i at all times Si+ xFi, where x is an integer and x ≥ 0, and the bus takes Di time to reach city i + 1.
At each city between 1 and N - 1, inclusive, you can decide to spend Ts time sightseeing before waiting for the next bus, or you can immediately wait for the next bus. You cannot go sightseeing multiple times in the same city. You may assume that boarding and leaving buses takes no time. You must arrive at city N by time Tf at the latest. (Note that you cannot go sightseeing in city N, even if you arrive early. There's nothing to see there!)
What is the maximum number of cities you can go sightseeing in?
Input
The input starts with one line containing one integer T, which is the number of test cases. T test cases follow.
Each test case begins with a line containing 3 integers, N, Ts and Tf, representing the number of cities, the time taken for sightseeing in any city, and the latest time you can arrive in city N.
This is followed by N - 1 lines. On the i-th line, there are 3 integers, Si, Fi and Di, indicating the start time, frequency, and duration of buses travelling from city i to city i + 1.
Output
For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the maximum number of cities you can go sightseeing in such that you can still arrive at city N by time Tf at the latest. If it is impossible to arrive at city N by time Tf, output Case #x: IMPOSSIBLE.
Limits
1 ≤ T ≤ 100.
Small dataset
2 ≤ N ≤ 16.
1 ≤ Si ≤ 5000.
1 ≤ Fi ≤ 5000.
1 ≤ Di ≤ 5000.
1 ≤ Ts ≤ 5000.
1 ≤ Tf ≤ 5000.
Large dataset
2 ≤ N ≤ 2000.
1 ≤ Si ≤ 109.
1 ≤ Fi ≤ 109.
1 ≤ Di ≤ 109.
1 ≤ Ts ≤ 109.
1 ≤ Tf ≤ 109.
Sample
| Input |
Output |
4 |
Case #1: 2 |
In the first test case, you can go sightseeing in city 1, catching the bus leaving at time 3 and arriving at time 4. You can go sightseeing in city 2, leaving on the bus at time 8. When you arrive in city 3 at time 10 you immediately board the next bus and arrive in city 4 just in time at time 12.
大致思路:以dp[j][k]表示到达第j个城市,路上看过k次风景的最小时间,设计状态转移方程即可。
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i=a;i<=b;++i)
using namespace std;
long long int dp[][];
int s[];
int f[];
int d[];
long long int seartim(int num,long long int timenow)
{
//if(num==1&&timenow==3) printf("num=%d snum=%d dnum=%d f[num]=%d",num,s[num],d[num],f[num]);
if(timenow<=s[num]) return s[num]+d[num];
else
{
if(f[num]==) return timenow+d[num];
int t=(timenow-s[num])/f[num];
if((timenow-s[num])%f[num]>) t=t+;
return (long long int)s[num]+t*f[num]+d[num];
}
}
int main()
{
freopen("A-large.in","r",stdin);
freopen("A-large.out","w",stdout);
int T;
scanf("%d",&T);
int n,spend,ddl,ans;
rep(i,,T)
{
scanf("%d%d%d",&n,&spend,&ddl);
rep(j,,)
{
rep(k,,) dp[j][k]=ddl+;
}
rep(j,,n-)
{
scanf("%d%d%d",&s[j],&f[j],&d[j]);
}
dp[][]=;
rep(j,,n-)
{
rep(k,,j-) dp[j+][k]=seartim(j,dp[j][k]);
rep(k,,j)
{
// printf("spend=%d\n",spend);
// if(i==1&&j==1) printf("dp=%d \n",seartim(j,dp[j][k-1]+spend));
dp[j+][k]=min(dp[j+][k],seartim(j,dp[j][k-]+spend));
}
}
ans=n;
rep(j,,n-)
{
if(dp[n][j]<=ddl) ans=j;
}
if(ans==n) printf("Case #%d: IMPOSSIBLE\n",i);
else printf("Case #%d: %d\n",i,ans);
}
return ;
}
Kickstart Round D 2017 problem A sightseeing 一道DP的更多相关文章
- google Kickstart Round F 2017 四道题题解
Problem A. Kicksort 题意抽象一下为: 对于一个每次都从数列正中间取划分数的快速排序,给定一个1-n的排列,问快排的复杂度对于这个排列是否会退化为最坏复杂度. 数据范围: 测试组数1 ...
- Kickstart Round H 2019 Problem B. Diagonal Puzzle
有史以来打得最差的一次kickstart竟然发生在winter camp出结果前的最后一次ks = = 感觉自己的winter camp要凉了 究其原因,无非自己太眼高手低,好好做B, C的小数据,也 ...
- google Kickstart Round G 2017 三道题题解
A题:给定A,N,P,计算A的N!次幂对P取模的结果. 数据范围: T次测试,1 ≤ T ≤ 100 1<=A,N,P<=105 快速幂一下就好了.O(nlogn). AC代码: #inc ...
- Kickstart Round D 2017 : A
思路: 动态规划. large数据的时间范围很大,无法设计入状态中.转换思路为定义dp[i][j]为当前在景点i,并且已经游览了j个景点所花费的最小时间,这种思想与leetcode45类似.于是转移方 ...
- Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)
题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...
- Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)
Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...
- String & dp Problem Round 3 2017.4.22
对每一个特征求前缀和,如果它减去前面的某一个地方的和,得到的每个特征是相等的,那么然后就可以更新答案. 需要解决这个两个问题 1.如何使答案尽量大? 这个很简单,直接找尽量靠前的地方就好了. 2,如何 ...
- Codeforces Round #371 (Div. 2)E. Sonya and Problem Wihtout a Legend[DP 离散化 LIS相关]
E. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...
- Google Code Jam Round 1C 2015 Problem A. Brattleship
Problem You're about to play a simplified "battleship" game with your little brother. The ...
随机推荐
- 教你做一个单机版人事管理系统(Winform版)treeview与listview使用详情
------------------------------------------------------------------部门部分------------------------------ ...
- 【转载】 ISO14229系列之二:诊断指令格式和相关概念
转载链接:http://www.cnblogs.com/autogeek/p/4458658.html 1. 简单的通信机制 其实诊断通信的机制很简单,可以类比client-server通信方式,即客 ...
- MSDTC启用——分布式事务
一.前言 最近在做一个项目的时候使用了.NET中的System.Transactions(分布式事务),当项目开发完成以后,调用的时候遇到了MSDTC的问题,在查阅了相关资料后将这个问题解决了,大致的 ...
- 【echart】学习笔记
1. x 轴 y轴 的max min 只能为5的倍数 2.
- CrashMonkey4Android 的安装及使用
CrashMonkey4Android 的安装及使用 简介 CrashMonkey4Android,是一个依靠Cts框架,对原生Monkey进行改造后的产物,拥有以下新增功能: 保存每一步的截图 保存 ...
- JAVA二维数组的复制
JAVA二维数组的复制 笔者今天做一道ccf题目时,遇到要将二维数组拷贝复制时,没有用常规的那种一个一个数的复制,用的是System.arraycopy()来进行复制,下面介绍这个函数的一些注意点: ...
- Vmware Tools 下载及安装方法
Vmware Tools 下载及安装方法 王尚2014.11.20 一.介绍 VMware Tools 是VMware 虚拟机中自带的一种增强工具,相当于 VirtualBox 中的增强功能(Sun ...
- 使用jquery获取url及url参数的方法
使用jquery获取url以及使用jquery获取url参数是我们经常要用到的操作 1.jquery获取url很简单,代码如下: window.location.href; 其实只是用到了javasc ...
- JavaScript中的数组Array方法
push(),pop()方法 push(),pop()方法也叫栈方法,push()可以理解成,向末尾推入,而pop()恰好相反,可以理解成从末尾移除(取得). var nums=[1,2,3,4]; ...
- NYOJ--19--next_permutation()--擅长排列的小明
/* Name: NYOJ--19--擅长排列的小明 Date: 20/04/17 11:06 Description: 这道题可以DFS,然而用next_permutation更简单些 主要是全排列 ...