这是现场完整做出来的唯一一道题Orz。。而且还调了很久的bug。还是太弱了。

Problem

When you travel, you like to spend time sightseeing in as many cities as possible, but sometimes you might not be able to because you need to catch the bus to the next city. To maximize your travel enjoyment, you decide to write a program to optimize your schedule.

You begin at city 1 at time 0 and plan to travel to cities 2 to N in ascending order, visiting every city. There is a bus service from every city i to the next city i + 1. The i-th bus service runs on a schedule that is specified by 3 integers: SiFi and Di, the start time, frequency and ride duration. Formally, this means that there is a bus leaving from city i at all times Si+ xFi, where x is an integer and x ≥ 0, and the bus takes Di time to reach city i + 1.

At each city between 1 and N - 1, inclusive, you can decide to spend Ts time sightseeing before waiting for the next bus, or you can immediately wait for the next bus. You cannot go sightseeing multiple times in the same city. You may assume that boarding and leaving buses takes no time. You must arrive at city N by time Tf at the latest. (Note that you cannot go sightseeing in city N, even if you arrive early. There's nothing to see there!)

What is the maximum number of cities you can go sightseeing in?

Input

The input starts with one line containing one integer T, which is the number of test cases. T test cases follow.

Each test case begins with a line containing 3 integers, NTs and Tf, representing the number of cities, the time taken for sightseeing in any city, and the latest time you can arrive in city N.

This is followed by N - 1 lines. On the i-th line, there are 3 integers, SiFi and Di, indicating the start time, frequency, and duration of buses travelling from city i to city i + 1.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the maximum number of cities you can go sightseeing in such that you can still arrive at city N by time Tf at the latest. If it is impossible to arrive at city N by time Tf, output Case #x: IMPOSSIBLE.

Limits

1 ≤ T ≤ 100.

Small dataset

2 ≤ N ≤ 16.
1 ≤ Si ≤ 5000.
1 ≤ Fi ≤ 5000.
1 ≤ Di ≤ 5000.
1 ≤ Ts ≤ 5000.
1 ≤ Tf ≤ 5000.

Large dataset

2 ≤ N ≤ 2000.
1 ≤ Si ≤ 109.
1 ≤ Fi ≤ 109.
1 ≤ Di ≤ 109.
1 ≤ Ts ≤ 109.
1 ≤ Tf ≤ 109.

Sample

Input 
 
Output 
 
4
4 3 12
3 2 1
6 2 2
1 3 2
3 2 30
1 2 27
3 2 1
4 1 11
2 1 2
4 1 5
8 2 2
5 10 5000
14 27 31
27 11 44
30 8 20
2000 4000 3
Case #1: 2
Case #2: 0
Case #3: IMPOSSIBLE
Case #4: 4

In the first test case, you can go sightseeing in city 1, catching the bus leaving at time 3 and arriving at time 4. You can go sightseeing in city 2, leaving on the bus at time 8. When you arrive in city 3 at time 10 you immediately board the next bus and arrive in city 4 just in time at time 12.

大致思路:以dp[j][k]表示到达第j个城市,路上看过k次风景的最小时间,设计状态转移方程即可。

#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i=a;i<=b;++i)
using namespace std;
long long int dp[][];
int s[];
int f[];
int d[];
long long int seartim(int num,long long int timenow)
{
//if(num==1&&timenow==3) printf("num=%d snum=%d dnum=%d f[num]=%d",num,s[num],d[num],f[num]);
if(timenow<=s[num]) return s[num]+d[num];
else
{
if(f[num]==) return timenow+d[num];
int t=(timenow-s[num])/f[num];
if((timenow-s[num])%f[num]>) t=t+;
return (long long int)s[num]+t*f[num]+d[num];
}
}
int main()
{
freopen("A-large.in","r",stdin);
freopen("A-large.out","w",stdout);
int T;
scanf("%d",&T);
int n,spend,ddl,ans;
rep(i,,T)
{
scanf("%d%d%d",&n,&spend,&ddl);
rep(j,,)
{
rep(k,,) dp[j][k]=ddl+;
}
rep(j,,n-)
{
scanf("%d%d%d",&s[j],&f[j],&d[j]);
}
dp[][]=;
rep(j,,n-)
{
rep(k,,j-) dp[j+][k]=seartim(j,dp[j][k]);
rep(k,,j)
{
// printf("spend=%d\n",spend);
// if(i==1&&j==1) printf("dp=%d \n",seartim(j,dp[j][k-1]+spend));
dp[j+][k]=min(dp[j+][k],seartim(j,dp[j][k-]+spend));
}
}
ans=n;
rep(j,,n-)
{
if(dp[n][j]<=ddl) ans=j;
}
if(ans==n) printf("Case #%d: IMPOSSIBLE\n",i);
else printf("Case #%d: %d\n",i,ans);
}
return ;
}

Kickstart Round D 2017 problem A sightseeing 一道DP的更多相关文章

  1. google Kickstart Round F 2017 四道题题解

    Problem A. Kicksort 题意抽象一下为: 对于一个每次都从数列正中间取划分数的快速排序,给定一个1-n的排列,问快排的复杂度对于这个排列是否会退化为最坏复杂度. 数据范围: 测试组数1 ...

  2. Kickstart Round H 2019 Problem B. Diagonal Puzzle

    有史以来打得最差的一次kickstart竟然发生在winter camp出结果前的最后一次ks = = 感觉自己的winter camp要凉了 究其原因,无非自己太眼高手低,好好做B, C的小数据,也 ...

  3. google Kickstart Round G 2017 三道题题解

    A题:给定A,N,P,计算A的N!次幂对P取模的结果. 数据范围: T次测试,1 ≤ T ≤ 100 1<=A,N,P<=105 快速幂一下就好了.O(nlogn). AC代码: #inc ...

  4. Kickstart Round D 2017 : A

    思路: 动态规划. large数据的时间范围很大,无法设计入状态中.转换思路为定义dp[i][j]为当前在景点i,并且已经游览了j个景点所花费的最小时间,这种思想与leetcode45类似.于是转移方 ...

  5. Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)

    题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...

  6. Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)

    Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...

  7. String & dp Problem Round 3 2017.4.22

    对每一个特征求前缀和,如果它减去前面的某一个地方的和,得到的每个特征是相等的,那么然后就可以更新答案. 需要解决这个两个问题 1.如何使答案尽量大? 这个很简单,直接找尽量靠前的地方就好了. 2,如何 ...

  8. Codeforces Round #371 (Div. 2)E. Sonya and Problem Wihtout a Legend[DP 离散化 LIS相关]

    E. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...

  9. Google Code Jam Round 1C 2015 Problem A. Brattleship

    Problem You're about to play a simplified "battleship" game with your little brother. The ...

随机推荐

  1. request.setcharacterencoding()和request.setcontenttype(“html/css;charset”)的格式区别

    1.request.setCharacterEncoding()是设置从request中取得的值或从数据库中取出的值 指定后可以通过getParameter()则直接获得正确的字符串,如果不指定,则默 ...

  2. docker~写个容器启动的bash脚本

    回到目录 bash脚本在linux里就相当于win里的bat和cmd及ps脚本,可以把一般指令组织在一起,统一去执行,比如我有一些docker容器需要统一去启动,这时,你可以把它们写成一个bash脚本 ...

  3. HashMap TreeMap ConcurrentHashMap 源码

    1 HashMap java se 1.6 1.1 父类 java.lang.Object 继承者 java.util.AbstractMap<K,V> 继承者 java.util.Has ...

  4. [分享] 自动化测试与持续集成方案-- UI 检查

    对于自动化测试中,UI 自动化测试估计是最有争议的,让人又爱又恨. UI 自动化做回归测试,可以省下很多人力.如果版本一直不稳定,投入跟产出不成比例的. 时机 一般是要版本稳定,界面改动不大.如果迭代 ...

  5. IPSP问题

    场景:接触IPSP项目是个学习的过程,在此记录一些自己的认知,让自己更能全面的理解项目! 1 总结 1.1 日志追踪 IPSP工程所在的服务器有GW和Server之分,GW是连接外部服务器和serve ...

  6. 基于FPGA的VGA显示静态图片

    终于熬到暑假了,记过三四周的突击带考试,终于为我的大二画上了一个完整的句号,接下来终于可以静心去做自己想做的事情了,前一阵子报了一个线上培训班,学学Sobel边缘检测,之前一直在学习图像处理,但是因为 ...

  7. taskctl 软件集群安装部署

    TASKCTL的集群部署实际上是通过Server服务节点和多个Agent代理节点部署在网络环境中来实现的.在完成之前的单机部署之后,我们已经成功安装了一个Server节点了.接下来我们再介绍一下怎么安 ...

  8. 奇怪的道路[JXOI2012]

    题目描述 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n.m条道路连接在这些城市之间,每条道路将两个城 ...

  9. struts2上传文件类型列表

    '.a'      : 'application/octet-stream',         '.ai'     : 'application/postscript',         '.aif' ...

  10. RabbitMQ --- Work Queues(工作队列)

    目录 RabbitMQ --- Hello Mr.Tua 前言 Work Queues 即工作队列,它表示一个 Producer 对应多个 Consumer,包括两种分发模式:轮循分发(Round-r ...