八数码难题

——!x^n+y^n=z^n

  我在此只说明此题的一种用BFS的方法,因为本人也是初学,勉勉强强写了一个单向的BFS,据说最快的是IDA*(然而蒟蒻我不会…)

  各位如果想用IDA*的可以看看这位大佬的这篇文章:

http://www.cnblogs.com/ZYBGMZL/p/6852733.html

  接下来是我的方法,用luogu的跑了最慢是200ms,感觉还行把。

题目描述

在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字。棋盘中留有一个空格,空格用0来表示。空格周围的棋子可以移到空格中。要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了使题目简单,设目标状态为123804765),找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变。

输入输出格式

输入格式:

输入初试状态,一行九个数字,空格用0表示

输出格式:

只有一行,该行只有一个数字,表示从初始状态到目标状态需要的最少移动次数(测试数据中无特殊无法到达目标状态数据)

输入输出样例

输入样例#1

283104765

输出样例#1

4

  因为这是要最优解且保证数据有解,于是就想到了BFS。

  然而这个过程是有许多障碍的,要怎样检验自己的状态是否为解,还有判重的操作,如果你没有判重,TLE即在眼前…

所以我们可以想到压缩状态!当然如果用二进制难免有点力不从心,那我们干脆存成整数不就行了?但是可能你会发现,会有前导零的情况,怎么办?

这时候其实可以在状态前加一个1,在int型中还是过得去的。

  那判重怎么搞?注意到这只有9!种状态。

  想到什么?康托尔展开!对于0~8的全排列,

  012345678 的字典序是1,如果让你手动操作我想没什么问题,那怎么让计算机做这件事?

  对于 (a(n-1) a(n-2)L a(0))的字典序计算方法为:

  Σ(ci*i!)ci为当前未出现的比ai小的数的个数。

  既然这样,我们就能把状态一一存下来了,交换的话很简单,读者手动操作即可发现规律。

  简单说明之后附上代码参考一下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxn 400000
//阶乘?我当然打表啦。
]={,,,,,,,,,};
//状态
struct sjs{
    int num;
    int pos;
}state[maxn];
//队列
struct _757{
    int time;
    int now;
    int fd;
}qu[maxn];
];
//判重
bool rep[maxn];
int head,tail;
//特殊嗜好???
namespace lys{
    //快速幂
    int fpow(int p){
        ,;
        ){
            ) res*=base;
            base*=base;
            p>>=;
        }
        return res;
    }
    //计算cantor
    int cantor(int num){
        ,pos,res=;
        int x=num;
        memset(cto,,sizeof cto);
        ){
            cto[i]=num%;
            ) pos=i;
            num/=;
            i++;
        }
        int j,cal;
        ;i>=;i--){
            cal=;
            ;j>i;j--){
                if(cto[j]<cto[i]) cal++;
            }
            res+=(cto[i]-cal)*fac[i];
        }
        state[res+].num=x;
        state[res+].pos=pos;
        ;
    }
    //判断是否能移动
    bool chk(int pos,int i){
        switch(i){
            :) return true ; return false ;
            :) return true ; return false ;
            :||pos==||pos==) return false ; return true ;
            :||pos==||pos==) return false ; return true ;
        }
    }
    int bfs(){
        ,i,st,ch,fp,x,num;
        do{
            st=qu[head].now;
            fp=fpow(state[st].pos);
            num=state[st].num;
            ;i<=;i++){
                if(chk(state[st].pos,i)){
                    switch(i){
                        :
                            x=(num/(fp*))%;
                            ch=num-x*fp*+x*fp;
                            x=cantor(ch);
                            qu[++tail].now=x;
                            qu[tail].time=(qu[head].time+);
                            qu[tail].fd=head;
                            //目标态,觉得不这样写也行,直接用num比较
                            ){
                                return qu[tail].time;
                            }
                            if(rep[x]) tail--;
                            else rep[x]=true ;
                            break ;
                        :
                            x=(num/(fp/))%;
                            ch=num-x*fp/+x*fp;
                            x=cantor(ch);
                            qu[++tail].now=x;
                            qu[tail].time=(qu[head].time+);
                            qu[tail].fd=head;
                            ){
                                return qu[tail].time;
                            }
                            if(rep[x]) tail--;
                            else rep[x]=true ;
                            break ;
                        :
                            x=(num/(fp*))%;
                            ch=num+x*fp-x*fp*;
                            x=cantor(ch);
                            qu[++tail].now=x;
                            qu[tail].time=(qu[head].time+);
                            qu[tail].fd=head;
                            ){
                                return qu[tail].time;
                            }
                            if(rep[x]) tail--;
                            else rep[x]=true ;
                            break ;
                        :
                            x=(num/(fp/))%;
                            ch=num+x*fp-x*fp/;
                            x=cantor(ch);
                            qu[++tail].now=x;
                            qu[tail].time=(qu[head].time+);
                            qu[tail].fd=head;
                            ){
                                return qu[tail].time;
                            }
                            if(rep[x]) tail--;
                            else rep[x]=true ;
                            break ;
                    }
                }
            }
            head++;
        }while(head<=tail);
    }
    int main(){
        int i,j;
        char c;
        ;
        ;i<=;i++){
            ;j<=;j++){
                c=getchar();
                ') c=getchar();
                st=st*+c-';
            }
        }
        //初始状态
        +st);
        qu[++head].now=r;
        qu[head].time=;
        rep[r]=true ;
        tail=;
        printf("%d\n",bfs());
        ;
    }
}
int main(){
    lys::main();
    ;
}

[luogu]P1379 八数码难题[广度优先搜索]的更多相关文章

  1. luogu P1379 八数码难题

    题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了 ...

  2. luogu P1379 八数码难题(A*算法入门详细讲解)

     代码实现细节 #include<cstdio> #include<cstring> #include<iostream> using namespace std; ...

  3. 洛谷 P1379 八数码难题 解题报告

    P1379 八数码难题 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初 ...

  4. 洛谷——P1379 八数码难题

    P1379 八数码难题 双向BFS 原来双向BFS是这样的:终止状态与起始状态同时入队,进行搜索,只不过状态标记不一样而已,本题状态使用map来存储 #include<iostream> ...

  5. 洛谷P1379八数码难题

    题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中. 要求解的问题是:给出一种初始布局(初始状态)和目标布局(为 ...

  6. codevs1225八数码难题(搜索·)

    1225 八数码难题  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description Yours和zero在研究A*启 ...

  7. 洛谷—— P1379 八数码难题

    https://daniu.luogu.org/problem/show?pid=1379 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示 ...

  8. 洛谷 P1379 八数码难题

    题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了 ...

  9. 洛谷 - P1379 - 八数码难题 - bfs

    https://www.luogu.org/problemnew/show/P1379 #include <bits/stdc++.h> using namespace std; #def ...

随机推荐

  1. mysql安装报错

    一: -- MySQL 5.5.22Warning: Bison executable not found in PATH-- Configuring done-- Generating done-- ...

  2. 在chrome下鼠标拖动层变文本形状的问题

    学JQ也有一段时间了,想自己写个鼠标拖动层移动的效果(很简单,只是为了练习而已)于是就写下了下面的代码 <!DOCTYPE html> <html> <head> ...

  3. 织梦DEDECMS中的默认文件夹的名称怎么修改呢?

    1.首先找到系统配置文件,一般此文件会存放在Include目录下,文件名称为:common.inc.php.         2.打开common.inc.php,以修改模板目录templets为例, ...

  4. [附录]Discuz X2.5程序模块source功能处理目录注释

    /source/admincp后台管理 /source/admincp/cloud云平台项目 /source/admincp/menu后台扩展菜单目录 /source/admincp/moderate ...

  5. 【MyBatis源码解析】MyBatis一二级缓存

    MyBatis缓存 我们知道,频繁的数据库操作是非常耗费性能的(主要是因为对于DB而言,数据是持久化在磁盘中的,因此查询操作需要通过IO,IO操作速度相比内存操作速度慢了好几个量级),尤其是对于一些相 ...

  6. vue init webpack-simple project 报错处理(connect ETIMEDOUT 192.30.253.112)

    Failed to download repo vuejs-templates/webpack-simple: connect ETIMEDOUT 192.30.253.113:443 Failed ...

  7. Vue.js组件之间的通信

    导语:组件之间的关系不外乎两种, 父子组件和非父子组件,本文将对两类组件之间的通信方式进行详细阐述. 父子组件间的通信 通信方式1(单向绑定): Props down, Events up (建议使用 ...

  8. jmeter 实现DB数据与接口数据的匹配校验

    前言:接口出参数据与DB数据结合校验,使校验力度更准确~ jmeter自带插件JDBC Request Sampler 这个Sampler可以向数据库发送一个jdbc请求(sql语句),并获取返回的数 ...

  9. 关于MyEclipse修改项目名称后,部署到tomcat显示旧的项目名称

    问题:用Myeclipse部署项目的时候,     出现部署到tomcat下的项目是之前的项目,而不是当前的项目.   解决方案:工程名->右键->Properties->MyEcl ...

  10. 虚拟桌面 VDI

    什么是VDI(Virtual Desktop Infrastructure): 通过对于本企业的服务器进行整合,使用VMware进行虚拟机部署,利用服务器资源,实现由一个物理机实现多个虚拟机,解决资源 ...