Law of large numbers and Central limit theorem
大数定律 Law of large numbers (LLN)
虽然名字是 Law,但其实是严格证明过的 Theorem
- weak law of large number (Khinchin's law)
The weak law of large numbers: the sample average converges in probability to the expected value
$\bar{X_n}=\frac{1}{n}(X_1+ \cdots +X_n) \overset{p}{\to} E\{X\} $
- strong law of large number (proved by Kolmogorov in 1930)
The strong law of large numbers: the sample average converges almost surely to the expected value
$\bar{X_n}=\frac{1}{n}(X_1+ \cdots +X_n) \overset{a.s.}{\to} E\{X\} $
https://en.wikipedia.org/wiki/Law_of_large_numbers
https://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/
中心极限定理 Central Limit Theorem (CLT)
https://en.wikipedia.org/wiki/Central_limit_theorem
切比雪夫不等式 (Chebyshev's Inequality)
Let $X$ be a random variable with finite expected value $\mu$ and finit non-zero variance $\sigma^2$, then for any real number $k>0$,
$ \mathrm{Pr} \left( \left|X-\mu\right| \geq k \right) \leq \frac{\sigma^2}{k^2}$
马尔科夫不等式 (Markov's inequality)
If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a
$ \mathrm{Pr} \left( X \geq a \right) \leq \frac{\mu}{a} $
切尔诺夫限 (Chernoff bound)
The generic Chernoff bound for a random variable X is attained by applying Markov's inequality to etX. For every t > 0:
$ \mathrm{Pr} \left( X \geq a \right)=\mathrm{Pr} \left( e^{tX} \geq e^{ta} \right) \leq \frac{E[e^{tX}]}{e^{ta}} $
Law of large numbers and Central limit theorem的更多相关文章
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 【概率论】6-2:大数定理(The Law of Large Numbers)
title: [概率论]6-2:大数定理(The Law of Large Numbers) categories: - Mathematic - Probability keywords: - Ma ...
- Sampling Distribution of the Sample Mean|Central Limit Theorem
7.3 The Sampling Distribution of the Sample Mean population:1000:Scale are normally distributed with ...
- Sampling Distributions and Central Limit Theorem in R(转)
The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...
- 【概率论】6-3:中心极限定理(The Central Limit Theorem)
title: [概率论]6-3:中心极限定理(The Central Limit Theorem) categories: - Mathematic - Probability keywords: - ...
- Appendix 1- LLN and Central Limit Theorem
1. 大数定律(LLN) 设Y1,Y2,……Yn是独立同分布(iid,independently identically distribution)的随机变量,A = SY /n = (Y1+...+ ...
- 中心极限定理(Central Limit Theorem)
中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为 ,标准差为 ). (注:总体数据需独立同分布) 那么样本容量n应 ...
- 中心极限定理 | central limit theorem | 大数定律 | law of large numbers
每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?
- Markov and Chebyshev Inequalities and the Weak Law of Large Numbers
https://www.math.wustl.edu/~russw/f10.math493/chebyshev.pdf http://www.tkiryl.com/Probability/Chapte ...
随机推荐
- Java数字和字符的对照关系表
/* 数字和字符的对照关系表(编码表): ASCII码表:American Standard Code for Information Interchange,美国信息交换标准代码. Unicode码 ...
- datename()计算一个日期是星期几
- 【Python下进程同步之互斥锁、信号量、事件机制】
" 一.锁机制: multiprocess.Lock 上篇博客中,我们千方百计实现了程序的异步,让多个任务同时在几个进程中并发处理,但它们之间的运行没有顺序.尽管并发编程让我们能更加充分的 ...
- 微信小程序开发豆瓣电影接口失效
豆瓣旧API接口停用,使用以下接口代替 .获取正在热映的电影:https://douban.uieee.com/v2/movie/in_theaters访问参数:start : 数据的开始项 coun ...
- go语言快速入门教程
go快速入门指南 by 小强,2019-06-13 go语言是目前非常火热的语言,广泛应用于服务器端,云计算,kubernetes容器编排等领域.它是一种开源的编译型程序设计语言,支持并发.垃圾回收机 ...
- 模仿虎牙App 导航栏切换
昨天看虎牙直播,发现导航栏挺有意思,自己也做个玩玩 <view class="tab_list row"> <view class="tab_item ...
- Spring Boot 定时任务 Quartz 使用教程
Quartz是一个完全由java编写的开源作业调度框架,他使用非常简单.本章主要讲解 Quartz在Spring Boot 中的使用. 快速集成 Quartz 介绍 Quartz 几个主要技术点 Qu ...
- 洛谷P1060开心的金明(滚动数组优化)
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行”. ...
- 杭电 1114 Piggy-Bank 完全背包问题
Piggy-Bank Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- MUI - 上拉加载不执行
mui('#pullrefresh').pullRefresh().refresh(true); if($(".list-item").length == countDataSum ...