Law of large numbers and Central limit theorem
大数定律 Law of large numbers (LLN)
虽然名字是 Law,但其实是严格证明过的 Theorem
- weak law of large number (Khinchin's law)
The weak law of large numbers: the sample average converges in probability to the expected value
$\bar{X_n}=\frac{1}{n}(X_1+ \cdots +X_n) \overset{p}{\to} E\{X\} $
- strong law of large number (proved by Kolmogorov in 1930)
The strong law of large numbers: the sample average converges almost surely to the expected value
$\bar{X_n}=\frac{1}{n}(X_1+ \cdots +X_n) \overset{a.s.}{\to} E\{X\} $
https://en.wikipedia.org/wiki/Law_of_large_numbers
https://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/
中心极限定理 Central Limit Theorem (CLT)
https://en.wikipedia.org/wiki/Central_limit_theorem
切比雪夫不等式 (Chebyshev's Inequality)
Let $X$ be a random variable with finite expected value $\mu$ and finit non-zero variance $\sigma^2$, then for any real number $k>0$,
$ \mathrm{Pr} \left( \left|X-\mu\right| \geq k \right) \leq \frac{\sigma^2}{k^2}$
马尔科夫不等式 (Markov's inequality)
If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a
$ \mathrm{Pr} \left( X \geq a \right) \leq \frac{\mu}{a} $
切尔诺夫限 (Chernoff bound)
The generic Chernoff bound for a random variable X is attained by applying Markov's inequality to etX. For every t > 0:
$ \mathrm{Pr} \left( X \geq a \right)=\mathrm{Pr} \left( e^{tX} \geq e^{ta} \right) \leq \frac{E[e^{tX}]}{e^{ta}} $
Law of large numbers and Central limit theorem的更多相关文章
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 【概率论】6-2:大数定理(The Law of Large Numbers)
title: [概率论]6-2:大数定理(The Law of Large Numbers) categories: - Mathematic - Probability keywords: - Ma ...
- Sampling Distribution of the Sample Mean|Central Limit Theorem
7.3 The Sampling Distribution of the Sample Mean population:1000:Scale are normally distributed with ...
- Sampling Distributions and Central Limit Theorem in R(转)
The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...
- 【概率论】6-3:中心极限定理(The Central Limit Theorem)
title: [概率论]6-3:中心极限定理(The Central Limit Theorem) categories: - Mathematic - Probability keywords: - ...
- Appendix 1- LLN and Central Limit Theorem
1. 大数定律(LLN) 设Y1,Y2,……Yn是独立同分布(iid,independently identically distribution)的随机变量,A = SY /n = (Y1+...+ ...
- 中心极限定理(Central Limit Theorem)
中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为 ,标准差为 ). (注:总体数据需独立同分布) 那么样本容量n应 ...
- 中心极限定理 | central limit theorem | 大数定律 | law of large numbers
每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?
- Markov and Chebyshev Inequalities and the Weak Law of Large Numbers
https://www.math.wustl.edu/~russw/f10.math493/chebyshev.pdf http://www.tkiryl.com/Probability/Chapte ...
随机推荐
- NET在64位系統使用32位oracle客户端访问数据库
客户在win7 64位系统中安装32位的ora客户端,NET 安装后连线数据库 引发BadImageFomatException. 按客户机安装64位ora客户端也不现实,可能会影响其他应用的正常使用 ...
- 「CF815C」Karen and Supermarket
传送门 Luogu 解题思路 树形背包. 设 \(f[i][j][0/1]\) 表示在以 \(i\) 为根的子树中选 \(j\) 件商品的最少花费. 边界条件: \(f[i][j][0] = \min ...
- Java JDBC 数据库链接小结随笔
Java JDBC 数据库链接小结随笔 一.链接数据库的步骤 二.关于Statement 和 PrepareStatement 两者区别 用法 三.关于 ResultSet 的一些小结 四.自定义 ...
- oracle学习笔记(十四) 数据库对象 索引 视图 序列 同义词
数据库对象 用户模式:指数据库用户所创建和存储数据对象的统称.在访问其它用户模式的数据库对象时需加上用户模式. 如:scott.emp, scott.dept等. 数据库对象包括:表.视图.索引.序列 ...
- 25 JavaScript对象原型&ES5新的对象方法
JavaScript对象原型 所有JavaScript对象都从原型继承对象和方法 日期对象继承自Date.prototype,数组继承自Array.prototype,对象构造器新建的对象Person ...
- 吴裕雄--天生自然TensorFlow2教程:链式法则
import tensorflow as tf x = tf.constant(1.) w1 = tf.constant(2.) b1 = tf.constant(1.) w2 = tf.consta ...
- shell 脚本基础
弱类型语言 bash 变量类型 本地变量 环境变量 局部变量 位置参数变量 特殊变量 运行 无执行权限 bash hello.sh 有执行权限 检查语法 bash -n user.sh 跟踪每一行的执 ...
- 【剑指Offer面试编程题】题目1509:树中两个结点的最低公共祖先--九度OJ
题目描述: 给定一棵树,同时给出树中的两个结点,求它们的最低公共祖先. 输入: 输入可能包含多个测试样例. 对于每个测试案例,输入的第一行为一个数n(0<n<1000),代表测试样例的个数 ...
- 【摘录自MDN】客户端和服务器
客户端和服务器 连接到互联网的计算机被称作客户端和服务器.下面是一个简单描述它们如何交互的图表: 客户端是典型的Web用户入网设备(比如,你连接了Wi-Fi的电脑,或接入移动网络的手机)和设备上可联网 ...
- 如果你是新晋的leader, 你可能需要了解这些。
背景 在职业发展的道路上,我们总会面临这样的抉择: 是在技术的路上一条路走到黑,做技术专家 接触管理, 走上管理 年龄大了,搬砖没人要,转型 or 去公司楼下卖炒粉 我曾经有个小小的愿望: 在毕业5年 ...