[题解] LuoguP4609 [FJOI2016]建筑师
首先对于高度为\(n\)的建筑,他的左边有\(A-1\)个建筑能被看到,右边有\(B-1\)个建筑能被看到,这两者类似,所以先来看左边。
一个建筑将会遮挡住它后面的高度比它矮的建筑,直到一个高度比他高的出现,所以我们不妨按这样分段看一下,例如下面这个排列
3 2 4 1 5 7 6
分段后会变成
[3 2][4 1][5][7 6]
我们要求的就是高度为\(n\)的建筑左边有\(A-1\)段,右边有\(B-1\)段的方案数。
不难想到讲每一段看成一个圆排列,然后讲最大的一个元素作为排列的第一个,然后从左到右形成一段。
例如这个圆排列\((1,5,3)\),将\(5\)提到第一个后会变成\([5,3,1]\),这样就对应了上面说的一段。
那么我们只要把\(1...n-1\)这\(n-1\)个数安排到\(A+B-2\)个圆排列里,然后在\(n\)的左边放\(A-1\)个圆排列,其中这\(A-1\)个 圆排列按排列中的最大数做关键字从小到大放就好了,右边\(B-1\)个排列按从大到小放。
这样答案就是\(s(n-1,A+B-2) \times C(A+B-2,A-1)\)
其中\(C(n,r)\)表示组合数,\(s(n,k)\)表示第一类Stirling数,预处理出第一类斯特林数和组合数,\(O(1)\)的回答就好了
\(Code:\)
#include <bits/stdc++.h>
using namespace std;
const int N=50010,P=1e9+7;
inline int add(int x,int y){return (x+=y)>=P?x-P:x;}
inline int sub(int x,int y){return (x-=y)<0?x+P:x;}
int s[N][310],C[310][310];
int main()
{
s[0][0]=1;
for(int i=1;i<=50000;i++)
for(int j=1;j<=min(i,200);j++)
s[i][j]=add(1ll*s[i-1][j]*(i-1)%P,s[i-1][j-1]);
C[0][0]=1;
for(int i=1;i<=200;i++)
{
C[i][0]=C[i][i]=1;
for(int j=1;j<i;j++)
C[i][j]=add(C[i-1][j],C[i-1][j-1]);
}
int _;scanf("%d",&_);while(_--)
{
int n,A,B; scanf("%d%d%d",&n,&A,&B);
printf("%d\n",1ll*s[n-1][A+B-2]*C[A+B-2][A-1]%P);
}
return 0;
}
[题解] LuoguP4609 [FJOI2016]建筑师的更多相关文章
- 【LG4609】[FJOI2016]建筑师
[LG4609][FJOI2016]建筑师 题面 洛谷 题解 (图片来源于网络) 我们将每个柱子和他右边的省略号看作一个集合 则图中共有\(a+b-2\)个集合 而原来的元素中有\(n-1\)个(除去 ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
- Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues
考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...
- [FJOI2016]建筑师
题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...
- 洛谷 P4609: [FJOI2016] 建筑师
本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- Luogu4609 FJOI2016 建筑师 第一类斯特林数
题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...
- Luogu4609 FJOI2016建筑师(斯特林数)
显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...
随机推荐
- 【快学springboot】9.使用 @Transactional 注解配置事务管理
介绍 springboot对数据库事务的使用非常的方便,只需要在方法上添加@Transactional注解即可.Spring 为事务管理提供了丰富的功能支持.Spring 事务管理分为编程式和声明式的 ...
- 图论介绍(Graph Theory)
1 图论概述 1.1 发展历史 第一阶段: 1736:欧拉发表首篇关于图论的文章,研究了哥尼斯堡七桥问题,被称为图论之父 1750:提出了拓扑学的第一个定理,多面体欧拉公式:V-E+F=2 第二阶段( ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 辅助类:"text-warning" 类的文本样式
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- linux系统下安装两个或多个tomcat(转)
tomcat不用添加到环境变量中 直接解压两个tomcat 来到第二个tomcat的conf目录下 打开server.xml更改端口: 修改server.xml配置和第一个不同的启动.关闭监听端口 ...
- Android View转换成图片保存
package zhangphil.viewtoimage; import java.io.File;import java.io.FileOutputStream; import android.o ...
- java虚拟机之垃圾回收机制
一.需要回收的内存区域 程序计数器.虚拟机栈.本地方法栈 3 个区域随线程生灭(因为是线程私有),栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作.而 Java 堆和方法区则不一 ...
- myeclipse汉化
MyEclipse默认安装在计算机用户目录下面,安装完成后对MyEclipse快捷方式使用鼠标右键属性---打开文件位置--进入安装的目录下面即可看到 zh_CN.7z解压缩将zh_CN目录文件放到 ...
- redis有序集合-zset
概念:它是在set的基础上增加了一个顺序属性,这一属性在添加修改元素的时候可以指定,每次指定后,zset会自动按新的值调整顺序.可以理解为有两列的mysql表,一列存储value,一列存储顺序,操作中 ...
- sklearn中的多项式回归算法
sklearn中的多项式回归算法 1.多项式回归法多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加 ...
- linux systemctl命令
转自systemctl详解 systemctl 是系统服务管理器命令,它实际上将 service 和 chkconfig 这两个命令组合到一起. 任务 旧指令 新指令 使某服务自动启动 chkconf ...