C - The Battle of Chibi HDU - 5542 (树状数组+离散化)
So there is only one way left for Yu Zhou, send someone to fake surrender Cao Cao. Gai Huang was selected for this important mission. However, Cao Cao was not easy to believe others, so Gai Huang must leak some important information to Cao Cao before surrendering.
Yu Zhou discussed with Gai Huang and worked out NN information to be leaked, in happening order. Each of the information was estimated to has aiai value in Cao Cao's opinion.
Actually, if you leak information with strict increasing value could accelerate making Cao Cao believe you. So Gai Huang decided to leak exact MM information with strict increasing value in happening order. In other words, Gai Huang will not change the order of the NN information and just select MM of them. Find out how many ways Gai Huang could do this.
InputThe first line of the input gives the number of test cases, T(1≤100)T(1≤100). TT test cases follow.
Each test case begins with two numbers N(1≤N≤103)N(1≤N≤103) and M(1≤M≤N)M(1≤M≤N), indicating the number of information and number of information Gai Huang will select. Then NN numbers in a line, the ithithnumber ai(1≤ai≤109)ai(1≤ai≤109) indicates the value in Cao Cao's opinion of the ithith information in happening order.OutputFor each test case, output one line containing Case #x: y, where xx is the test case number (starting from 1) and yy is the ways Gai Huang can select the information.
The result is too large, and you need to output the result mod by 1000000007(109+7)1000000007(109+7).Sample Input
2
3 2
1 2 3
3 2
3 2 1
Sample Output
Case #1: 3
Case #2: 0
Hint
In the first cases, Gai Huang need to leak 2 information out of 3. He could leak any 2 information as all the information value are in increasing order.
In the second cases, Gai Huang has no choice as selecting any 2 information is not in increasing order.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=;
const int mod=1e9+;
int a[maxn],lsh[maxn];
int n,m;
int dp[][];
int lowbit(int x)
{
return x&-x;
}
void add(int x,int y,ll val)
{
for(int i=x;i<=n;i+=lowbit(i)){
dp[i][y]=(dp[i][y]+val)%mod;
}
}
int sum(int x,int y)
{
int ans=;
for(int i=x;i>=;i-=lowbit(i)){
ans=(ans+dp[i][y])%mod;
}
return ans;
}
int main()
{
ios::sync_with_stdio();
int T,k=;
cin>>T;
while(T--){
memset(dp,,sizeof(dp));
cin>>n>>m;
for(int i=;i<=n;i++){
cin>>a[i];
lsh[i]=a[i];
}
sort(lsh+,lsh++n);
// int len=unique(lsh+1,lsh+1+n)-lsh-1;//去不去重都一样啦,下面是lowerbound
for(int i=;i<=n;i++){
int x=lower_bound(lsh+,lsh++n,a[i])-lsh;
add(x,,);
for(int j=;j<=m;j++){
add(x,j,sum(x-,j-));
}
}
cout<<"Case #"<<k++<<": ";
cout<<sum(n,m)<<endl;
}
return ;
}
C - The Battle of Chibi HDU - 5542 (树状数组+离散化)的更多相关文章
- HDU - 5542 The Battle of Chibi(LIS+树状数组优化)
The Battle of Chibi Cao Cao made up a big army and was going to invade the whole South China. Yu Zho ...
- HDU 1394 树状数组+离散化求逆序数
对于求逆序数问题,学会去利用树状数组进行转换求解方式,是很必要的. 一般来说我们求解逆序数,是在给定一串序列里,用循环的方式找到每一个数之前有多少个比它大的数,算法的时间复杂度为o(n2). 那么我们 ...
- hdu 5792 树状数组+离散化+思维
题目大意: Given a sequence A with length n,count how many quadruple (a,b,c,d) satisfies: a≠b≠c≠d,1≤a< ...
- [hdu 4417]树状数组+离散化+离线处理
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417 把数字离散化,一个查询拆成两个查询,每次查询一个前缀的和.主要问题是这个数组是静态的,如果带修改 ...
- hdu 4325 树状数组+离散化
思路:这题的思路很容易想到,把所有时间点离散化,然后按时间一步一步来,当到达时间i的时候处理所有在i处的查询. 这个代码怎一个挫字了得 #include<iostream> #includ ...
- Disharmony Trees HDU - 3015 树状数组+离散化
#include<cstdio> #include<cstring> #include<algorithm> #define ll long long using ...
- Swaps and Inversions HDU - 6318 树状数组+离散化
#include<iostream> #include<algorithm> #include<cstring> #include<cstdio> us ...
- hdu 4638 树状数组 区间内连续区间的个数(尽可能长)
Group Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- hdu 4777 树状数组+合数分解
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
随机推荐
- python查找数组中出现次数最多的元素
方法1-np.argmax(np.bincount()) 看一个例子 array = [0,1,2,2,3,4,4,4,5,6] print(np.bincount(array)) print(np. ...
- Chrome在新版MacOS上报错 NET::ERR_CERT_WEAK_KEY 解决方法
现象 原文链接 证书详情: 原因 参考苹果官网给出的提示(https://support.apple.com/en-us/HT210176): RSA秘钥长度必须>=2048,小于这个长度的将不 ...
- shell 疑难
#!/bin/bashBIN=`which $0`BIN=`dirname ${BIN}`BIN=`cd "$BIN"; pwd` #列出脚本所在目录全局路径
- Python快速安装库的靠谱办法
我们如果使用python,并且使用pip安装一些库 会经常遇到pip在线安装速度慢 ! 慢也就算了,安装经常会由于timeout等原因中断 所以有没有什么在线安装库并且速度较快的办法么? 其实是有 ...
- SQL基础教程(第2版)第7章 集合运算:7-1 表的加减法
第7章 集合运算:7-1 表的加减法 ● 集合运算就是对满足同一规则的记录进行的加减等四则运算.● 使用UNION(并集). INTERSECT(交集). EXCEPT(差集)等集合运算符来进行集合运 ...
- MySQL性能管理及架构设计:第1章 实例和故事
1-1 什么决定了电商双11大促的成败 数据库架构 1-2 在双11大促中的数据库服务器 通过监控信息从而确定:哪些因素影响了数据库性能? 1-3 在大促中什么影响了数据库性能 1-4 大表带来的问题 ...
- hash简单题(hdu4907)
Task schedule 地址:http://acm.hdu.edu.cn/showproblem.php?pid=4907 Problem Description 有一台机器,并且给你这台机器的工 ...
- Mybatis之一级缓存(七)
1. 介绍 Mybatis缓存分为一级缓存和二级缓存,在本节中我们介绍下一级缓存的使用及其特性 MyBatis的一级缓存是在一个Session域内有效的,当Session关闭后,缓存内容也随之销毁.缓 ...
- JavaScript数组去重(5种方法)
// 数组去重 let arr = ['a', 'b', 'b', 1, 1, 'true', true, true, NaN, NaN, 'NaN', undefined, undefined, n ...
- 三、VIP课程:并发编程专题->01-并发编程之Executor线程池详解
01-并发编程之Executor线程池详解 线程:什么是线程&多线程 线程:线程是进程的一个实体,是 CPU 调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系 ...