C - The Battle of Chibi HDU - 5542 (树状数组+离散化)
So there is only one way left for Yu Zhou, send someone to fake surrender Cao Cao. Gai Huang was selected for this important mission. However, Cao Cao was not easy to believe others, so Gai Huang must leak some important information to Cao Cao before surrendering.
Yu Zhou discussed with Gai Huang and worked out NN information to be leaked, in happening order. Each of the information was estimated to has aiai value in Cao Cao's opinion.
Actually, if you leak information with strict increasing value could accelerate making Cao Cao believe you. So Gai Huang decided to leak exact MM information with strict increasing value in happening order. In other words, Gai Huang will not change the order of the NN information and just select MM of them. Find out how many ways Gai Huang could do this.
InputThe first line of the input gives the number of test cases, T(1≤100)T(1≤100). TT test cases follow.
Each test case begins with two numbers N(1≤N≤103)N(1≤N≤103) and M(1≤M≤N)M(1≤M≤N), indicating the number of information and number of information Gai Huang will select. Then NN numbers in a line, the ithithnumber ai(1≤ai≤109)ai(1≤ai≤109) indicates the value in Cao Cao's opinion of the ithith information in happening order.OutputFor each test case, output one line containing Case #x: y, where xx is the test case number (starting from 1) and yy is the ways Gai Huang can select the information.
The result is too large, and you need to output the result mod by 1000000007(109+7)1000000007(109+7).Sample Input
2
3 2
1 2 3
3 2
3 2 1
Sample Output
Case #1: 3
Case #2: 0
Hint
In the first cases, Gai Huang need to leak 2 information out of 3. He could leak any 2 information as all the information value are in increasing order.
In the second cases, Gai Huang has no choice as selecting any 2 information is not in increasing order.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=;
const int mod=1e9+;
int a[maxn],lsh[maxn];
int n,m;
int dp[][];
int lowbit(int x)
{
return x&-x;
}
void add(int x,int y,ll val)
{
for(int i=x;i<=n;i+=lowbit(i)){
dp[i][y]=(dp[i][y]+val)%mod;
}
}
int sum(int x,int y)
{
int ans=;
for(int i=x;i>=;i-=lowbit(i)){
ans=(ans+dp[i][y])%mod;
}
return ans;
}
int main()
{
ios::sync_with_stdio();
int T,k=;
cin>>T;
while(T--){
memset(dp,,sizeof(dp));
cin>>n>>m;
for(int i=;i<=n;i++){
cin>>a[i];
lsh[i]=a[i];
}
sort(lsh+,lsh++n);
// int len=unique(lsh+1,lsh+1+n)-lsh-1;//去不去重都一样啦,下面是lowerbound
for(int i=;i<=n;i++){
int x=lower_bound(lsh+,lsh++n,a[i])-lsh;
add(x,,);
for(int j=;j<=m;j++){
add(x,j,sum(x-,j-));
}
}
cout<<"Case #"<<k++<<": ";
cout<<sum(n,m)<<endl;
}
return ;
}
C - The Battle of Chibi HDU - 5542 (树状数组+离散化)的更多相关文章
- HDU - 5542 The Battle of Chibi(LIS+树状数组优化)
The Battle of Chibi Cao Cao made up a big army and was going to invade the whole South China. Yu Zho ...
- HDU 1394 树状数组+离散化求逆序数
对于求逆序数问题,学会去利用树状数组进行转换求解方式,是很必要的. 一般来说我们求解逆序数,是在给定一串序列里,用循环的方式找到每一个数之前有多少个比它大的数,算法的时间复杂度为o(n2). 那么我们 ...
- hdu 5792 树状数组+离散化+思维
题目大意: Given a sequence A with length n,count how many quadruple (a,b,c,d) satisfies: a≠b≠c≠d,1≤a< ...
- [hdu 4417]树状数组+离散化+离线处理
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417 把数字离散化,一个查询拆成两个查询,每次查询一个前缀的和.主要问题是这个数组是静态的,如果带修改 ...
- hdu 4325 树状数组+离散化
思路:这题的思路很容易想到,把所有时间点离散化,然后按时间一步一步来,当到达时间i的时候处理所有在i处的查询. 这个代码怎一个挫字了得 #include<iostream> #includ ...
- Disharmony Trees HDU - 3015 树状数组+离散化
#include<cstdio> #include<cstring> #include<algorithm> #define ll long long using ...
- Swaps and Inversions HDU - 6318 树状数组+离散化
#include<iostream> #include<algorithm> #include<cstring> #include<cstdio> us ...
- hdu 4638 树状数组 区间内连续区间的个数(尽可能长)
Group Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- hdu 4777 树状数组+合数分解
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
随机推荐
- axios基础介绍
axios基础介绍 get请求要在params中定义,post要在data中定义.
- POJ - 2385 Apple Catching (dp)
题意:有两棵树,标号为1和2,在Tmin内,每分钟都会有一个苹果从其中一棵树上落下,问最多移动M次的情况下(该人可瞬间移动),最多能吃到多少苹果.假设该人一开始在标号为1的树下. 分析: 1.dp[x ...
- Java 跨系统开发隐患(一)
换行符 主流系统换行符如下: Windows : \r\n Linux : \n Unix : \r 为了保证代码可以跨系统开发或使用,建议使用换行符时用下列语句获取: System.getPrope ...
- sql优化从300秒到7秒
原始sql select b.jd 街道,b.rglm 楼宇,zzrl 楼宇编号,count(oname) 入楼企业总数, (select count(oname) from ${tablename} ...
- C++基础--重载、重写、隐藏
1.重载(overload) 重载的概念是在同一作用域内,函数名相同,函数输入参数个数.数据类型不同,但是不能是函数名.参数个数.数据类型完全相同但返回值不同的情况.最直接的例子是常见的构造函数重载, ...
- outlook 2013邮件在服务器保留副本
用outlook2013来收邮件确实是比较方便,但是它收邮件默认设置是:当outlook2013将在线邮箱的邮件下载至本机计算机之后,它就会删除在线邮箱中的邮件.不知道是不是以前邮箱容量比较小,所以要 ...
- code force 1228C
算是一题普通数论+思维题吧. 大概很多人是被题意绕晕了. 思路: 首先常规操作求出X的质因子. 然后题目要求的是,X的每个质因子p,在g(i,p)的连乘.i∈[1,n]: 我们转换下思维,不求每一个g ...
- Exchange 2016 OWA更改css样式
css文件目录:E:\Exchange 2016\FrontEnd\HttpProxy\owa\auth\15.1.1713\themes\resources\logon.css ##更改左侧页面颜色 ...
- ArrayList集合的增、删、改、获取和长度
API : code: package student; import java.util.ArrayList; public class ArrayListDemo { public static ...
- Django2.0——Form组件简单总结
Django提供了一个Form组件来配和前端的表单进行使用,Form有两个强大的功能,分别是生成HTML代码和验证数据的合法性.通常我们不会用其第一个功能,因为前端的设计可以做出更加精美且多样的表单页 ...