即使我们从理论上理解了卷积神经网络,在实际进行将数据拟合到网络时,很多人仍然对其网络的输入和输出形状(shape)感到困惑。本文章将帮助你理解卷积神经网络的输入和输出形状。

让我们看看一个例子。CNN的输入数据如下图所示。我们假设我们的数据是图像的集合。

输入的形状

你始终必须将4D数组作为CNN的输入。因此,输入数据的形状为(batch_size,height,width,depth),其中第一维表示图像的batch大小,其他三个维表示图像的各个属性,即高度,宽度和深度。深度就是色彩通道的数量。例如,RGB图像的深度为3,而灰度图像的深度为1。

输出形状

CNN的输出也是4D数组。其中batch大小将与输入batch大小相同,但是图像的其他3个尺寸可能会根据滤波器(filter) ,内核大小(kernel size)和填充值(padding)而变化。

让我们看一下下面的代码片段。

不要在这里被input_shape参数欺骗,以为输入形状是3D,但是在进行训练时必须传递一个4D数组,该数据的形状应该是(batchsize,10,10,3)。由于inputshape参数中没有batch值,因此在拟合数据时可以采用任何batch大小。

而且正如你所见,输出的形状为(None,10,10,64)。第一个维度表示batch大小,目前为"None"。因为网络事先不知道batch大小。拟合数据后,将使用拟合数据时给出的batch大小来代替"None"。

让我们看看另一个代码片段。

在这里,我将inputshape参数替换为batchinput_shape。顾名思义,此参数将事先提供batch大小,并且在拟合数据时你无法提供任何其他batch大小。例如,在本例你必须用batch大小为16的数据来拟合网络。

你可以从上图看到输出形状的batch大小是16而不是None。

在卷积层上附加全连接(Dense)层

我们可以简单地在另一个卷积层的顶部添加一个卷积层,因为卷积的输出维度数与输入维度数相同。

通常,我们在卷积层的顶部添加Dense层以对图像进行分类。但是,Dense层需要形状为(batch_size,units)的数据。卷积层的输出是4D的数组。因此,我们必须将从卷积层接收的输出的尺寸更改为2D数组。

我们可以通过在卷积层的顶部插入一个Flatten层来做到这一点。Flatten层将3维图像变形成一个维。现在我们得到一个2D形状的数组(batchsize,squashedsize),这是Dense层需要的输入形状。

汇总

  • 你始终必须将形状为(batch_size, height, width, depth)的4D数组输入CNN。
  • CNN的输出数据也是形状(batch_size, height, width, depth)的4D数组。
  • 要在CNN层的顶部添加一个Dense层,我们必须使用keras的Flatten层将CNN的4D输出更改为2D。

欢迎关注磐创博客资源汇总站:http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:http://pytorch.panchuang.net/

理解卷积神经网络中的输入与输出形状(Keras实现)的更多相关文章

  1. 理解卷积神经网络中的channel

    在一般的深度学习框架的 conv2d 中,如 tensorflow.mxnet,channel 都是必填的一个参数 在 tensorflow 中,对于输入样本中 channels 的含义,一般是RGB ...

  2. CNN笔记:通俗理解卷积神经网络【转】

    本文转载自:https://blog.csdn.net/v_july_v/article/details/51812459 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1 前言 2012 ...

  3. CNN笔记:通俗理解卷积神经网络

    CNN笔记:通俗理解卷积神经网络 2016年07月02日 22:14:50 v_JULY_v 阅读数 250368更多 分类专栏: 30.Machine L & Deep Learning 机 ...

  4. 卷积神经网络中的通道 channel

    卷积神经网络中 channels 分为三种:    (1):最初输入的图片样本的 channels ,取决于图片类型,比如RGB, channels=3    (2):卷积操作完成后输出的 out_c ...

  5. 卷积神经网络中的Winograd快速卷积算法

    目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog ...

  6. (转)MyBatis框架的学习(四)——Mapper.xml文件中的输入和输出映射以及动态sql

    http://blog.csdn.net/yerenyuan_pku/article/details/71893689 前面对MyBatis框架的学习中,我们对Mapper.xml映射文件多少有些了解 ...

  7. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

  8. 卷积神经网络中的channel 和filter

    在深度学习的算法学习中,都会提到 channels 这个概念.在一般的深度学习框架的 conv2d 中,如 tensorflow .mxnet,channels 都是必填的一个参数. channels ...

  9. python中的输入和输出

    输入和输出   输出: 用print()在括号中加上字符串,就可以向屏幕上输出指定的文字.比如输出'hello, world',用代码实现如下: >>> print('hello, ...

随机推荐

  1. LeetCode~1033.移动石子直到连续

    1033.移动石子直到连续 三枚石子放置在数轴上,位置分别为 a,b,c. 每一回合,我们假设这三枚石子当前分别位于位置 x, y, z 且 x < y < z.从位置 x 或者是位置 z ...

  2. EventBus 及一些思考

    EventBus 是 Android 开发的一种常用框架,其解耦的思维令人赞叹 从特性上来讲,其与 Android SDK中的BroadcastReceiver很像,二者都是注册,发送事件,反注册,都 ...

  3. XML转换

    找到两个不错的c#的关于XML转string和将string格式化XML输出 感谢以下两位的分享: [string格式化XML输出]http://blog.csdn.net/a497785609/ar ...

  4. 达拉草201771010105《面向对象程序设计(java)》第十八周学习总结

    达拉草201771010105<面向对象程序设计(java)>第十八周学习总结 实验十八  总复习 实验时间 2018-12-30 1.实验目的与要求 (1) 综合掌握java基本程序结构 ...

  5. unittest实战(一):用例框架

    import unittest class forTest0(unittest.TestCase): @classmethod def setUpClass(cls) -> None: prin ...

  6. 【每日一包0018】fecha

    [github地址:https://github.com/ABCDdouyae...] fecha 比moment.js更加轻量级的时间解析和格式化包 format 用法:format(<Dat ...

  7. python+opencv->边缘提取与各函数参数解析

    前情提要:作为刚入门机器视觉的小伙伴,第一节课学到机器视觉语法时觉得很难理解, 很多人家的经验,我发现都千篇一律,功能函数没解析,参数不讲解,就一个代码,所以在此将搜集的解析和案例拿出来汇总!!! 一 ...

  8. linux-TFTP服务

    1.TFTP协议简介TFTP,全称是 Trivial File Transfer Protocol(简单文件传输协议),基于 UDP 实现,该协议简单到只能从远程服务器读取数据或向远程服务器上传数据. ...

  9. Django Queryset增加manager

    **#定义一个新的过滤规则,这里是过滤状态为发布的帖子** **class PublishedManager(models.Manager):**        **def get_queryset( ...

  10. 取url地址参数

    let url = 'https://i-beta.cnblogs.com/posts/edit?param1=123&param2=second'let arr = url.split('& ...