自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络。

相对于感知器,

  1. 采用了f(z)=z的激活函数,属于连续函数。
  2. 代价函数为LMS函数,最小均方算法,Least mean square。

实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的。

 '''
Adaline classifier created on 2019.9.14
author: vince
'''
import pandas
import math
import numpy
import logging
import random
import matplotlib.pyplot as plt from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score '''
Adaline classifier Attributes
w: ld-array = weights after training
l: list = number of misclassification during each iteration
'''
class Adaline:
def __init__(self, eta = 0.001, iter_num = 500, batch_size = 1):
'''
eta: float = learning rate (between 0.0 and 1.0).
iter_num: int = iteration over the training dataset.
batch_size: int = gradient descent batch number,
if batch_size == 1, used SGD;
if batch_size == 0, use BGD;
else MBGD;
''' self.eta = eta;
self.iter_num = iter_num;
self.batch_size = batch_size; def train(self, X, Y):
'''
train training data.
X:{array-like}, shape=[n_samples, n_features] = Training vectors,
where n_samples is the number of training samples and
n_features is the number of features.
Y:{array-like}, share=[n_samples] = traget values.
'''
self.w = numpy.zeros(1 + X.shape[1]);
self.l = numpy.zeros(self.iter_num);
for iter_index in range(self.iter_num):
for rand_time in range(X.shape[0]):
sample_index = random.randint(0, X.shape[0] - 1);
if (self.activation(X[sample_index]) == Y[sample_index]):
continue;
output = self.net_input(X[sample_index]);
errors = Y[sample_index] - output;
self.w[0] += self.eta * errors;
self.w[1:] += self.eta * numpy.dot(errors, X[sample_index]);
break;
for sample_index in range(X.shape[0]):
self.l[iter_index] += (Y[sample_index] - self.net_input(X[sample_index])) ** 2 * 0.5;
logging.info("iter %s: w0(%s), w1(%s), w2(%s), l(%s)" %
(iter_index, self.w[0], self.w[1], self.w[2], self.l[iter_index]));
if iter_index > 1 and math.fabs(self.l[iter_index - 1] - self.l[iter_index]) < 0.0001:
break; def activation(self, x):
return numpy.where(self.net_input(x) >= 0.0 , 1 , -1); def net_input(self, x):
return numpy.dot(x, self.w[1:]) + self.w[0]; def predict(self, x):
return self.activation(x); def main():
logging.basicConfig(level = logging.INFO,
format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt = '%a, %d %b %Y %H:%M:%S'); iris = load_iris(); features = iris.data[:99, [0, 2]];
# normalization
features_std = numpy.copy(features);
for i in range(features.shape[1]):
features_std[:, i] = (features_std[:, i] - features[:, i].mean()) / features[:, i].std(); labels = numpy.where(iris.target[:99] == 0, -1, 1); # 2/3 data from training, 1/3 data for testing
train_features, test_features, train_labels, test_labels = train_test_split(
features_std, labels, test_size = 0.33, random_state = 23323); logging.info("train set shape:%s" % (str(train_features.shape))); classifier = Adaline(); classifier.train(train_features, train_labels); test_predict = numpy.array([]);
for feature in test_features:
predict_label = classifier.predict(feature);
test_predict = numpy.append(test_predict, predict_label); score = accuracy_score(test_labels, test_predict);
logging.info("The accruacy score is: %s "% (str(score))); #plot
x_min, x_max = train_features[:, 0].min() - 1, train_features[:, 0].max() + 1;
y_min, y_max = train_features[:, 1].min() - 1, train_features[:, 1].max() + 1;
plt.xlim(x_min, x_max);
plt.ylim(y_min, y_max);
plt.xlabel("width");
plt.ylabel("heigt"); plt.scatter(train_features[:, 0], train_features[:, 1], c = train_labels, marker = 'o', s = 10); k = - classifier.w[1] / classifier.w[2];
d = - classifier.w[0] / classifier.w[2]; plt.plot([x_min, x_max], [k * x_min + d, k * x_max + d], "go-"); plt.show(); if __name__ == "__main__":
main();

自适应线性神经网络Adaline的更多相关文章

  1. python机器学习——自适应线性神经元

    上篇博客我们说了感知器,这篇博客主要记录自适应线性神经元的实现算法及一些其他的训练细节,自适应线性神经元(简称为Adaline)由Bernard Widrow和他的博士生Tedd Hoff提出,对感知 ...

  2. 神经网络_线性神经网络 2 (Nerual Network_Linear Nerual Network 2)

    1 LMS 学习规则 1.1 LMS学习规则定义 MSE=(1/Q)*Σe2k=(1/Q)*Σ(tk-ak)2,k=1,2,...,Q 式中:Q是训练样本:t(k)是神经元的期望输出:a(k)是神经元 ...

  3. 神经网络_线性神经网络 1 (Nerual Network_Linear Nerual Network 1)

    2019-04-08 16:59:23 1 学习规则(Learning Rule) 1.1 赫布学习规则(Hebb Learning Rule) 1949年,Hebb提出了关于神经网络学习机理的“突触 ...

  4. 单层感知机_线性神经网络_BP神经网络

    单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as ...

  5. 使用MindSpore的线性神经网络拟合非线性函数

    技术背景 在前面的几篇博客中,我们分别介绍了MindSpore的CPU版本在Docker下的安装与配置方案.MindSpore的线性函数拟合以及MindSpore后来新推出的GPU版本的Docker编 ...

  6. MATLAB——线性神经网络

     这个函数默认使用最小二乘,所以不需要训练 % example5_1.m x=-:; y=*x-; % 直线方程为 randn(); % 设置种子,便于重复执行 y=y+randn(,length(y ...

  7. 神经网络_线性神经网络 3 (Nerual Network_Linear Nerual Network 3)

    1 LMS 学习规则_解方程组 1.1 LMS学习规则举例 X1=[0 0 1]T,t1=0:X2=[1 0 1]T,t2=0:X3=[0 1 1]T,t3=0:X1=[1 1 1]T,t1=1. 设 ...

  8. (转)神经网络和深度学习简史(第一部分):从感知机到BP算法

    深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...

  9. 机器学习 —— 基础整理(六)线性判别函数:感知器、松弛算法、Ho-Kashyap算法

    这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在time ...

随机推荐

  1. HandlerInterceptor ModelAndView null springMVC @ResponseBody

    本文来源https://blog.csdn.net/whiteforever/article/details/77457109 用了@RestController或者@ResponseBody注解之后 ...

  2. ef01

    1.ef简介 学习地址: https://www.entityframeworktutorial.net/ orm:Object relations mapping 对象关系映射 实体类中的属性与数据 ...

  3. SPA中前端路由基本原理与实现方式

    SPA 前端路由原理与实现方式 通常 SPA 中前端路由有2中实现方式,本文会简单快速总结这两种方法及其实现: 修改 url 中 Hash 利用 H5 中的 history Hash 我们都知道 ur ...

  4. 并发工具类的使用 CountDownLatch,CyclicBarrier,Semaphore,Exchanger

    1.CountDownLatch 允许一个或多个线程等待直到在其他线程中执行的一组操作完成的同步辅助. A CountDownLatch用给定的计数初始化. await方法阻塞,直到由于countDo ...

  5. javascript的装饰者模式Decorator

    刚开始看这段代码有点绕,现在回过头来看,so easy! Function.prototype.before = function(beforefn){ var _self = this; retur ...

  6. mysql的锁与事务

    1. MySQL中的事物 1.InnoDB事务原理 1. 事务(Transaction)是数据库区别于文件系统的重要特性之一,事务会把数据库从一种一致性状态转换为另一种一致性状态. 2. 在数据库提交 ...

  7. Head First设计模式——蝇量和解释器模式

    蝇量 蝇量模式:如果让某个类的一个实例能用来提供许多“虚拟实例”,就使用蝇量模式. 在一个设计房子的平台中,周围要加上一些树,树有一个坐标XY坐标位置,而且可以根据树的年龄动态将自己绘制出来.如果我们 ...

  8. 【原创】(求锤得锤的故事)Redis锁从面试连环炮聊到神仙打架。

    这是why技术的第38篇原创文章 又到了一周一次的分享时间啦,老规矩,还是先荒腔走板的聊聊生活. 有上面的图是读大学的时候,一次自行车骑行途中队友抓拍的我的照片.拍照的地方,名字叫做牛背山,一个名字很 ...

  9. R中character和factor的as.integer的不同

    记录一个容易犯错的地方. 用chr标记的0~1变量可以变为整数0和1, 而用因子factor标记的变量转换为整数时总是从1开始. 如果不注意区分就会发生令自己困惑的错误.

  10. Simulink仿真入门到精通(六) Simulink模型保存为图片

    6.1 截图保存方式 Ctrl+Alt+A 6.2 拷贝试图方式 Edit→Copy Current View to Clipboard 6.3 saveas函数 用于保存figure或者simuli ...