自适应线性神经网络Adaline
自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络。
相对于感知器,
- 采用了f(z)=z的激活函数,属于连续函数。
- 代价函数为LMS函数,最小均方算法,Least mean square。

实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的。
'''
Adaline classifier created on 2019.9.14
author: vince
'''
import pandas
import math
import numpy
import logging
import random
import matplotlib.pyplot as plt from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score '''
Adaline classifier Attributes
w: ld-array = weights after training
l: list = number of misclassification during each iteration
'''
class Adaline:
def __init__(self, eta = 0.001, iter_num = 500, batch_size = 1):
'''
eta: float = learning rate (between 0.0 and 1.0).
iter_num: int = iteration over the training dataset.
batch_size: int = gradient descent batch number,
if batch_size == 1, used SGD;
if batch_size == 0, use BGD;
else MBGD;
''' self.eta = eta;
self.iter_num = iter_num;
self.batch_size = batch_size; def train(self, X, Y):
'''
train training data.
X:{array-like}, shape=[n_samples, n_features] = Training vectors,
where n_samples is the number of training samples and
n_features is the number of features.
Y:{array-like}, share=[n_samples] = traget values.
'''
self.w = numpy.zeros(1 + X.shape[1]);
self.l = numpy.zeros(self.iter_num);
for iter_index in range(self.iter_num):
for rand_time in range(X.shape[0]):
sample_index = random.randint(0, X.shape[0] - 1);
if (self.activation(X[sample_index]) == Y[sample_index]):
continue;
output = self.net_input(X[sample_index]);
errors = Y[sample_index] - output;
self.w[0] += self.eta * errors;
self.w[1:] += self.eta * numpy.dot(errors, X[sample_index]);
break;
for sample_index in range(X.shape[0]):
self.l[iter_index] += (Y[sample_index] - self.net_input(X[sample_index])) ** 2 * 0.5;
logging.info("iter %s: w0(%s), w1(%s), w2(%s), l(%s)" %
(iter_index, self.w[0], self.w[1], self.w[2], self.l[iter_index]));
if iter_index > 1 and math.fabs(self.l[iter_index - 1] - self.l[iter_index]) < 0.0001:
break; def activation(self, x):
return numpy.where(self.net_input(x) >= 0.0 , 1 , -1); def net_input(self, x):
return numpy.dot(x, self.w[1:]) + self.w[0]; def predict(self, x):
return self.activation(x); def main():
logging.basicConfig(level = logging.INFO,
format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt = '%a, %d %b %Y %H:%M:%S'); iris = load_iris(); features = iris.data[:99, [0, 2]];
# normalization
features_std = numpy.copy(features);
for i in range(features.shape[1]):
features_std[:, i] = (features_std[:, i] - features[:, i].mean()) / features[:, i].std(); labels = numpy.where(iris.target[:99] == 0, -1, 1); # 2/3 data from training, 1/3 data for testing
train_features, test_features, train_labels, test_labels = train_test_split(
features_std, labels, test_size = 0.33, random_state = 23323); logging.info("train set shape:%s" % (str(train_features.shape))); classifier = Adaline(); classifier.train(train_features, train_labels); test_predict = numpy.array([]);
for feature in test_features:
predict_label = classifier.predict(feature);
test_predict = numpy.append(test_predict, predict_label); score = accuracy_score(test_labels, test_predict);
logging.info("The accruacy score is: %s "% (str(score))); #plot
x_min, x_max = train_features[:, 0].min() - 1, train_features[:, 0].max() + 1;
y_min, y_max = train_features[:, 1].min() - 1, train_features[:, 1].max() + 1;
plt.xlim(x_min, x_max);
plt.ylim(y_min, y_max);
plt.xlabel("width");
plt.ylabel("heigt"); plt.scatter(train_features[:, 0], train_features[:, 1], c = train_labels, marker = 'o', s = 10); k = - classifier.w[1] / classifier.w[2];
d = - classifier.w[0] / classifier.w[2]; plt.plot([x_min, x_max], [k * x_min + d, k * x_max + d], "go-"); plt.show(); if __name__ == "__main__":
main();

自适应线性神经网络Adaline的更多相关文章
- python机器学习——自适应线性神经元
上篇博客我们说了感知器,这篇博客主要记录自适应线性神经元的实现算法及一些其他的训练细节,自适应线性神经元(简称为Adaline)由Bernard Widrow和他的博士生Tedd Hoff提出,对感知 ...
- 神经网络_线性神经网络 2 (Nerual Network_Linear Nerual Network 2)
1 LMS 学习规则 1.1 LMS学习规则定义 MSE=(1/Q)*Σe2k=(1/Q)*Σ(tk-ak)2,k=1,2,...,Q 式中:Q是训练样本:t(k)是神经元的期望输出:a(k)是神经元 ...
- 神经网络_线性神经网络 1 (Nerual Network_Linear Nerual Network 1)
2019-04-08 16:59:23 1 学习规则(Learning Rule) 1.1 赫布学习规则(Hebb Learning Rule) 1949年,Hebb提出了关于神经网络学习机理的“突触 ...
- 单层感知机_线性神经网络_BP神经网络
单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as ...
- 使用MindSpore的线性神经网络拟合非线性函数
技术背景 在前面的几篇博客中,我们分别介绍了MindSpore的CPU版本在Docker下的安装与配置方案.MindSpore的线性函数拟合以及MindSpore后来新推出的GPU版本的Docker编 ...
- MATLAB——线性神经网络
这个函数默认使用最小二乘,所以不需要训练 % example5_1.m x=-:; y=*x-; % 直线方程为 randn(); % 设置种子,便于重复执行 y=y+randn(,length(y ...
- 神经网络_线性神经网络 3 (Nerual Network_Linear Nerual Network 3)
1 LMS 学习规则_解方程组 1.1 LMS学习规则举例 X1=[0 0 1]T,t1=0:X2=[1 0 1]T,t2=0:X3=[0 1 1]T,t3=0:X1=[1 1 1]T,t1=1. 设 ...
- (转)神经网络和深度学习简史(第一部分):从感知机到BP算法
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...
- 机器学习 —— 基础整理(六)线性判别函数:感知器、松弛算法、Ho-Kashyap算法
这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在time ...
随机推荐
- element ui table render-header自定义表头信息使用
在使用vue自定义组件内容过程之中,我们绝大多数情况下都是通过预先写好不同的html模板,再通过props传入不同的值来渲染不同的模板.例如我们需要实现一个<v-title size='1'&g ...
- 原生js写一个无缝轮播图插件(支持vue)
轮播图插件(Broadcast.js) 前言:写这个插件的原因 前段时间准备用vue加上网易云的nodejs接口,模拟网易云音乐移动端.因为想自己写一遍所有的代码以及加固自己的flex布局,所以没有使 ...
- 基础JavaScript练习(一)总结
任务目的 在上一任务基础上继续JavaScript的体验 接触一下JavaScript中的高级选择器 学习JavaScript中的数组对象遍历.读写.排序等操作 学习简单的字符串处理操作 任务描述 参 ...
- Netty学习(4):NIO网络编程
概述 在 Netty学习(3)中,我们已经学习了 Buffer 和 Channel 的概念, 接下来就让我们通过实现一个 NIO 的多人聊天服务器来深入理解 NIO 的第 3个组件:Selector. ...
- scrapy mid中间件一般处理方法
import user_agent import requests class UA_midd(object): def process_request(self,request,spider): r ...
- RocketMQ-2.RocketMQ的负载均衡
目录 RocketMQ的负载均衡 producer对MessageQueue的负载均衡 producer负载均衡 系统计算路由MessageQueue 自定义路由MessageQueue Consum ...
- HTML5&CCS3(3)基本HTML结构
3.1 开始编写网页 每个HTML文档都应该包含以下基本成分: DOCTYPE: html元素(包含lang属性.该属性不是必需的,但推荐加上): head元素: 说明字符编码的meta元素: tit ...
- Button相关设置
2020-03-11 每日一例第4天 1.添加按钮1-6,并修改相应的text值: 2.窗体Load事件加载代码: private void Form1_Load(object sender, Ev ...
- IPFS(星际文件系统)-初步接触
〇.IPFS介绍 从HTTP到IPFS,星际文件系统能变革信息传播的方式吗? 戴嘉乐:详解IPFS的本质.技术架构以及应用 以下为实现相关摘要 1.存储 在IPFS中,信息可以存储进IPFS系统中的块 ...
- CentOS7采用tar.gz包方式安装Mysql5.7
软件:VMware Linux版本:CentOS 7 一.安装mysql(采用tar.gz包安装Mysql5.7) 1.安装开发工具包 [root@localhost ~]# yum groups m ...