自适应线性神经网络Adaline
自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络。
相对于感知器,
- 采用了f(z)=z的激活函数,属于连续函数。
- 代价函数为LMS函数,最小均方算法,Least mean square。
实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的。
'''
Adaline classifier created on 2019.9.14
author: vince
'''
import pandas
import math
import numpy
import logging
import random
import matplotlib.pyplot as plt from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score '''
Adaline classifier Attributes
w: ld-array = weights after training
l: list = number of misclassification during each iteration
'''
class Adaline:
def __init__(self, eta = 0.001, iter_num = 500, batch_size = 1):
'''
eta: float = learning rate (between 0.0 and 1.0).
iter_num: int = iteration over the training dataset.
batch_size: int = gradient descent batch number,
if batch_size == 1, used SGD;
if batch_size == 0, use BGD;
else MBGD;
''' self.eta = eta;
self.iter_num = iter_num;
self.batch_size = batch_size; def train(self, X, Y):
'''
train training data.
X:{array-like}, shape=[n_samples, n_features] = Training vectors,
where n_samples is the number of training samples and
n_features is the number of features.
Y:{array-like}, share=[n_samples] = traget values.
'''
self.w = numpy.zeros(1 + X.shape[1]);
self.l = numpy.zeros(self.iter_num);
for iter_index in range(self.iter_num):
for rand_time in range(X.shape[0]):
sample_index = random.randint(0, X.shape[0] - 1);
if (self.activation(X[sample_index]) == Y[sample_index]):
continue;
output = self.net_input(X[sample_index]);
errors = Y[sample_index] - output;
self.w[0] += self.eta * errors;
self.w[1:] += self.eta * numpy.dot(errors, X[sample_index]);
break;
for sample_index in range(X.shape[0]):
self.l[iter_index] += (Y[sample_index] - self.net_input(X[sample_index])) ** 2 * 0.5;
logging.info("iter %s: w0(%s), w1(%s), w2(%s), l(%s)" %
(iter_index, self.w[0], self.w[1], self.w[2], self.l[iter_index]));
if iter_index > 1 and math.fabs(self.l[iter_index - 1] - self.l[iter_index]) < 0.0001:
break; def activation(self, x):
return numpy.where(self.net_input(x) >= 0.0 , 1 , -1); def net_input(self, x):
return numpy.dot(x, self.w[1:]) + self.w[0]; def predict(self, x):
return self.activation(x); def main():
logging.basicConfig(level = logging.INFO,
format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt = '%a, %d %b %Y %H:%M:%S'); iris = load_iris(); features = iris.data[:99, [0, 2]];
# normalization
features_std = numpy.copy(features);
for i in range(features.shape[1]):
features_std[:, i] = (features_std[:, i] - features[:, i].mean()) / features[:, i].std(); labels = numpy.where(iris.target[:99] == 0, -1, 1); # 2/3 data from training, 1/3 data for testing
train_features, test_features, train_labels, test_labels = train_test_split(
features_std, labels, test_size = 0.33, random_state = 23323); logging.info("train set shape:%s" % (str(train_features.shape))); classifier = Adaline(); classifier.train(train_features, train_labels); test_predict = numpy.array([]);
for feature in test_features:
predict_label = classifier.predict(feature);
test_predict = numpy.append(test_predict, predict_label); score = accuracy_score(test_labels, test_predict);
logging.info("The accruacy score is: %s "% (str(score))); #plot
x_min, x_max = train_features[:, 0].min() - 1, train_features[:, 0].max() + 1;
y_min, y_max = train_features[:, 1].min() - 1, train_features[:, 1].max() + 1;
plt.xlim(x_min, x_max);
plt.ylim(y_min, y_max);
plt.xlabel("width");
plt.ylabel("heigt"); plt.scatter(train_features[:, 0], train_features[:, 1], c = train_labels, marker = 'o', s = 10); k = - classifier.w[1] / classifier.w[2];
d = - classifier.w[0] / classifier.w[2]; plt.plot([x_min, x_max], [k * x_min + d, k * x_max + d], "go-"); plt.show(); if __name__ == "__main__":
main();
自适应线性神经网络Adaline的更多相关文章
- python机器学习——自适应线性神经元
上篇博客我们说了感知器,这篇博客主要记录自适应线性神经元的实现算法及一些其他的训练细节,自适应线性神经元(简称为Adaline)由Bernard Widrow和他的博士生Tedd Hoff提出,对感知 ...
- 神经网络_线性神经网络 2 (Nerual Network_Linear Nerual Network 2)
1 LMS 学习规则 1.1 LMS学习规则定义 MSE=(1/Q)*Σe2k=(1/Q)*Σ(tk-ak)2,k=1,2,...,Q 式中:Q是训练样本:t(k)是神经元的期望输出:a(k)是神经元 ...
- 神经网络_线性神经网络 1 (Nerual Network_Linear Nerual Network 1)
2019-04-08 16:59:23 1 学习规则(Learning Rule) 1.1 赫布学习规则(Hebb Learning Rule) 1949年,Hebb提出了关于神经网络学习机理的“突触 ...
- 单层感知机_线性神经网络_BP神经网络
单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as ...
- 使用MindSpore的线性神经网络拟合非线性函数
技术背景 在前面的几篇博客中,我们分别介绍了MindSpore的CPU版本在Docker下的安装与配置方案.MindSpore的线性函数拟合以及MindSpore后来新推出的GPU版本的Docker编 ...
- MATLAB——线性神经网络
这个函数默认使用最小二乘,所以不需要训练 % example5_1.m x=-:; y=*x-; % 直线方程为 randn(); % 设置种子,便于重复执行 y=y+randn(,length(y ...
- 神经网络_线性神经网络 3 (Nerual Network_Linear Nerual Network 3)
1 LMS 学习规则_解方程组 1.1 LMS学习规则举例 X1=[0 0 1]T,t1=0:X2=[1 0 1]T,t2=0:X3=[0 1 1]T,t3=0:X1=[1 1 1]T,t1=1. 设 ...
- (转)神经网络和深度学习简史(第一部分):从感知机到BP算法
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...
- 机器学习 —— 基础整理(六)线性判别函数:感知器、松弛算法、Ho-Kashyap算法
这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在time ...
随机推荐
- SpringBoot图文教程11—从此不写mapper文件「SpringBoot集成MybatisPlus」
有天上飞的概念,就要有落地的实现 概念十遍不如代码一遍,朋友,希望你把文中所有的代码案例都敲一遍 先赞后看,养成习惯 SpringBoot 图文教程系列文章目录 SpringBoot图文教程1「概念+ ...
- Description Resource Path Location Type cvc-complex-type.2.4.c: The matching 解决问题
2017-03-02 10:08:03,112 [localhost-startStop-1] ERROR org.springframework.web.servlet.DispatcherServ ...
- 三年前端,面试思考(头条蚂蚁美团offer)
小鱼儿本人985本科,软件工程专业,前端.工作三年半,第一家创业公司,半年.第二家前端技术不错的公司,两年半.第三家,个人创业半年.可以看出,我是个很喜欢折腾的人,大学期间也做过很多项目,非常愿意参与 ...
- 前端复习笔记--1.html标签复习速查
概览 文档章节 <body> <header> <nav> 导航 <aside> 表示和主要内容不相关的区域 <article> 表示一个独 ...
- 前端AES加密解密
最开始使用的aes-js的npm包,后来发现npm上面那个包只能加密16个长度的字节,非16个长度的字符串就会报错,后来使用的是crypto-js, AES总共有四种加密方式,我们使用的CBC方式: ...
- HDFS NameNode详解
1. namenode介绍 namenode管理文件系统的命名空间.它维护着文件系统树及整棵树内所有的文件和目录.这些信息以两个文件形式永久保存在本地磁盘上:命名空间镜像文件fsimage和编辑日志文 ...
- 通过nodejs实现文件的上传
通过nodejs实现文件的上传 主要内容 本文将用来讲述如何通过nodejs进行文件上传,将会涉及到以下知识点: 通过express模块进行服务器的搭建 通过multer模块将上传的文件保存到指定目录 ...
- 黑科技神器-uTools
Hello,各位小伙伴们好,又到周末了,小黑哥给大家分享一款神器:『utools』. 官网地址:https://u.tools/ uTools 是一个极简.插件化.跨平台的现代桌面软件.通过自由选配丰 ...
- Asp.Net Core 2.0实现HttpResponse中繁切换
随笔背景:因为项目中有个简单的功能是需要实现中文简体到繁体的切换,数据库中存储的源数据都是中文简体的,为了省事就想着通过HttpHeader的方式来控制Api返回对应的繁体数据. 实现方式:通过Asp ...
- 去除 inline-block 元素间距
案例重现 布局时经常能发现inline元素和inline-block元素水平呈现的元素间,会存在着一些意想不到的间距,举例: .inline-block { display: inline-block ...