给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

说明:

  • 所有数字(包括 target)都是正整数。
  • 解集不能包含重复的组合。

示例 1:

输入: candidates = [2,3,6,7], target = 7,
所求解集为:
[
[7],
[2,2,3]
]

示例 2:

输入: candidates = [2,3,5], target = 8,
所求解集为:
[
[2,2,2,2],
[2,3,3],
[3,5]
]

递归函数

这里我们新加入三个变量,start 记录当前的递归到的下标,out 为一个解,res 保存所有已经得到的解,每次调用新的递归函数时,此时的 target 要减去当前数组的的数,具体看代码如下:

c++

class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> res;
vector<int> out;
combinationSumDFS(candidates, target, 0, out, res);
return res;
}
void combinationSumDFS(vector<int>& candidates, int target, int start, vector<int>& out, vector<vector<int>>& res) {
if (target < 0) return;
if (target == 0) {res.push_back(out); return;}
for (int i = start; i < candidates.size(); ++i) {
out.push_back(candidates[i]);
combinationSumDFS(candidates, target - candidates[i], i, out, res);
out.pop_back();
}
}
};

递归改进

我们也可以不使用额外的函数,就在一个函数中完成递归,还是要先给数组排序,然后遍历,如果当前数字大于 target,说明肯定无法组成 target,由于排过序,之后的也无法组成 target,直接 break 掉。如果当前数字正好等于 target,则当前单个数字就是一个解,组成一个数组然后放到结果 res 中。

然后将当前位置之后的数组取出来,调用递归函数,注意此时的 target 要减去当前的数字,然后遍历递归结果返回的二维数组,将当前数字加到每一个数组最前面,然后再将每个数组加入结果 res 即可,参见代码如下:

c++

class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> res;
sort(candidates.begin(), candidates.end());
for (int i = 0; i < candidates.size(); ++i) {
if (candidates[i] > target) break;
if (candidates[i] == target) {res.push_back({candidates[i]}); break;}
vector<int> vec = vector<int>(candidates.begin() + i, candidates.end());
vector<vector<int>> tmp = combinationSum(vec, target - candidates[i]);
for (auto a : tmp) {
a.insert(a.begin(), candidates[i]);
res.push_back(a);
}
}
return res;
}
};

java

class Solution {

	List<List<Integer>> res = new ArrayList<>();

    public List<List<Integer>> combinationSum(int[] candidates, int target) {
if (target <= 0) {res.add(new ArrayList<>());}
//先排序,排序后可以加剪枝
Arrays.sort(candidates);
dfs(new ArrayList<>(), candidates, 0, target, 0);
return res;
} public void dfs(List<Integer> list, int[] candidates, int sum, int target, int start) {
for (int i = start; i < candidates.length; i++) {
list.add(candidates[i]);
if ((sum + candidates[i]) == target) {
//此时tmpList 满足
List<Integer> tmpList = new ArrayList<>(list);
res.add(tmpList);
} if ((sum + candidates[i]) < target) {
dfs(list, candidates, sum + candidates[i], target, i);
} else {
list.remove(list.size() - 1);
//(sum+candidates[i]) > target,因为数组有序,后面一定不满足
break;
}
list.remove(list.size() - 1);
}
}
}

动态规划

我们也可以用迭代的解法来做,建立一个三维数组 dp,这里 dp[i] 表示目标数为 i+1 的所有解法集合。这里的i就从1遍历到 target 即可,对于每个i,都新建一个二维数组 cur,然后遍历 candidates 数组,如果遍历到的数字大于i,说明当前及之后的数字都无法组成i,直接 break 掉。否则如果相等,那么把当前数字自己组成一个数组,并且加到 cur 中。否则就遍历 dp[i - candidates[j] - 1] 中的所有数组,如果当前数字大于数组的首元素,则跳过,因为结果要求是要有序的。否则就将当前数字加入数组的开头,并且将数组放入 cur 之中即可,参见代码如下:

c++

class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<vector<int>>> dp;
sort(candidates.begin(), candidates.end());
for (int i = 1; i <= target; ++i) {
vector<vector<int>> cur;
for (int j = 0; j < candidates.size(); ++j) {
if (candidates[j] > i) break;
if (candidates[j] == i) {cur.push_back({candidates[j]}); break;}
for (auto a : dp[i - candidates[j] - 1]) {
if (candidates[j] > a[0]) continue;
a.insert(a.begin(), candidates[j]);
cur.push_back(a);
}
}
dp.push_back(cur);
}
return dp[target - 1];
}
};

LeetCode——39. 组合总和的更多相关文章

  1. Java实现 LeetCode 39 组合总和

    39. 组合总和 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字 ...

  2. [LeetCode] 39. 组合总和

    题目链接 : https://leetcode-cn.com/problems/combination-sum/ 题目描述: 给定一个无重复元素的数组 candidates 和一个目标数 target ...

  3. [leetcode] 39. 组合总和(Java)(dfs、递归、回溯)

    39. 组合总和 直接暴力思路,用dfs+回溯枚举所有可能组合情况.难点在于每个数可取无数次. 我的枚举思路是: 外层枚举答案数组的长度,即枚举解中的数字个数,从1个开始,到target/ min(c ...

  4. leetcode 39 组合总和 JAVA

    题目: 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制 ...

  5. LeetCode 39. 组合总和(Combination Sum)

    题目描述 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限 ...

  6. leetcode 39. 组合总和(python)

    给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制重复被选 ...

  7. 【LeetCode】39. 组合总和

    39. 组合总和 知识点:递归:回溯:组合:剪枝 题目描述 给定一个无重复元素的正整数数组 candidates 和一个正整数 target ,找出 candidates 中所有可以使数字和为目标数  ...

  8. Java实现 LeetCode 40 组合总和 II(二)

    40. 组合总和 II 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数字在 ...

  9. LeetCode 中级 - 组合总和II(105)

    给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数字在每个组合中只能使用一次. ...

随机推荐

  1. Ubuntu操作系统部署zabbix agent服务

    Ubuntu操作系统部署zabbix agent服务 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.下载zabbix软件包 博主推荐阅读: https://www.cnblog ...

  2. springboot2.1以javabean整合rabbitmq及自动注入rabbitmqTemplate为空问题

    springboot集成rabbitmq之前也写过,这次再来个总结,总体来讲比较简单 主要就是配置属性文件,将属性以javabean的形式注入,配置工厂,对象等原来以xml<bean>形式 ...

  3. 关于Orcale 11g 安装过程

    1.前往Oracle官网下载相应安装包 https://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.h ...

  4. SpringIOC初始化过程源码跟踪及学习

    Spring版本 4.3.2,ssm框架 代码过宽,可以shift + 鼠标滚轮 左右滑动查看 web.xml <!--配置获取项目的根路径,java类中使用System.getProperty ...

  5. R 《回归分析与线性统计模型》page164 单变量、多变量多项式模型

    --多项式回归模型 --单变量多项式模型 --多变量多项式模型 rm(list = ls()) library(openxlsx) library(leaps) #单变量多项式模型# data = r ...

  6. decompiler of java

    运维了两个java项目,但是没有源代码,整天都是各种问题,各方面都不配合.我也只是个小小的兵,但是工作还是要做. 转机 偶然想试一试decomplier,就找到了gd-gui,感觉用着挺好的,到把项目 ...

  7. emmmmmmmmmmmmmmmmmm01

    当体会活着有多么难之后,就不要在那么随意的活着,今天有多么不在意自己的人生,明天就要加倍的被别的人左右自己的人生. 多思考,多学习,多总结,多创造.让自己成为有用的人,让自己未来有一天成为自己的主人.

  8. spring#事件发布订阅

    1. 如果在应用中发生了某些事件,事件会被拦截和处理就好了,这样就有了很大的灵活性,至少代码不会紧密的耦合在一起, 代码的解耦就是业务的解耦,业务A的代码不用手动的调用业务B的代码,业务B只需要监听相 ...

  9. 配置 git公钥报错:unknown key type -rsa

    配置 git公钥的时候出现:ssh-keygen unknown key type -rsa 一个解决办法是去本地寻找.ssh文件,参考路径(C:\Users\Administrator.ssh),把 ...

  10. Spark Scheduler 模块(下)

    Scheduler 模块中最重要的两个类是 DAGScheduler 和 TaskScheduler.上篇讲了 DAGScheduler,这篇讲 TaskScheduler. TaskSchedule ...