给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

说明:

  • 所有数字(包括 target)都是正整数。
  • 解集不能包含重复的组合。

示例 1:

输入: candidates = [2,3,6,7], target = 7,
所求解集为:
[
[7],
[2,2,3]
]

示例 2:

输入: candidates = [2,3,5], target = 8,
所求解集为:
[
[2,2,2,2],
[2,3,3],
[3,5]
]

递归函数

这里我们新加入三个变量,start 记录当前的递归到的下标,out 为一个解,res 保存所有已经得到的解,每次调用新的递归函数时,此时的 target 要减去当前数组的的数,具体看代码如下:

c++

class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> res;
vector<int> out;
combinationSumDFS(candidates, target, 0, out, res);
return res;
}
void combinationSumDFS(vector<int>& candidates, int target, int start, vector<int>& out, vector<vector<int>>& res) {
if (target < 0) return;
if (target == 0) {res.push_back(out); return;}
for (int i = start; i < candidates.size(); ++i) {
out.push_back(candidates[i]);
combinationSumDFS(candidates, target - candidates[i], i, out, res);
out.pop_back();
}
}
};

递归改进

我们也可以不使用额外的函数,就在一个函数中完成递归,还是要先给数组排序,然后遍历,如果当前数字大于 target,说明肯定无法组成 target,由于排过序,之后的也无法组成 target,直接 break 掉。如果当前数字正好等于 target,则当前单个数字就是一个解,组成一个数组然后放到结果 res 中。

然后将当前位置之后的数组取出来,调用递归函数,注意此时的 target 要减去当前的数字,然后遍历递归结果返回的二维数组,将当前数字加到每一个数组最前面,然后再将每个数组加入结果 res 即可,参见代码如下:

c++

class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> res;
sort(candidates.begin(), candidates.end());
for (int i = 0; i < candidates.size(); ++i) {
if (candidates[i] > target) break;
if (candidates[i] == target) {res.push_back({candidates[i]}); break;}
vector<int> vec = vector<int>(candidates.begin() + i, candidates.end());
vector<vector<int>> tmp = combinationSum(vec, target - candidates[i]);
for (auto a : tmp) {
a.insert(a.begin(), candidates[i]);
res.push_back(a);
}
}
return res;
}
};

java

class Solution {

	List<List<Integer>> res = new ArrayList<>();

    public List<List<Integer>> combinationSum(int[] candidates, int target) {
if (target <= 0) {res.add(new ArrayList<>());}
//先排序,排序后可以加剪枝
Arrays.sort(candidates);
dfs(new ArrayList<>(), candidates, 0, target, 0);
return res;
} public void dfs(List<Integer> list, int[] candidates, int sum, int target, int start) {
for (int i = start; i < candidates.length; i++) {
list.add(candidates[i]);
if ((sum + candidates[i]) == target) {
//此时tmpList 满足
List<Integer> tmpList = new ArrayList<>(list);
res.add(tmpList);
} if ((sum + candidates[i]) < target) {
dfs(list, candidates, sum + candidates[i], target, i);
} else {
list.remove(list.size() - 1);
//(sum+candidates[i]) > target,因为数组有序,后面一定不满足
break;
}
list.remove(list.size() - 1);
}
}
}

动态规划

我们也可以用迭代的解法来做,建立一个三维数组 dp,这里 dp[i] 表示目标数为 i+1 的所有解法集合。这里的i就从1遍历到 target 即可,对于每个i,都新建一个二维数组 cur,然后遍历 candidates 数组,如果遍历到的数字大于i,说明当前及之后的数字都无法组成i,直接 break 掉。否则如果相等,那么把当前数字自己组成一个数组,并且加到 cur 中。否则就遍历 dp[i - candidates[j] - 1] 中的所有数组,如果当前数字大于数组的首元素,则跳过,因为结果要求是要有序的。否则就将当前数字加入数组的开头,并且将数组放入 cur 之中即可,参见代码如下:

c++

class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<vector<int>>> dp;
sort(candidates.begin(), candidates.end());
for (int i = 1; i <= target; ++i) {
vector<vector<int>> cur;
for (int j = 0; j < candidates.size(); ++j) {
if (candidates[j] > i) break;
if (candidates[j] == i) {cur.push_back({candidates[j]}); break;}
for (auto a : dp[i - candidates[j] - 1]) {
if (candidates[j] > a[0]) continue;
a.insert(a.begin(), candidates[j]);
cur.push_back(a);
}
}
dp.push_back(cur);
}
return dp[target - 1];
}
};

LeetCode——39. 组合总和的更多相关文章

  1. Java实现 LeetCode 39 组合总和

    39. 组合总和 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字 ...

  2. [LeetCode] 39. 组合总和

    题目链接 : https://leetcode-cn.com/problems/combination-sum/ 题目描述: 给定一个无重复元素的数组 candidates 和一个目标数 target ...

  3. [leetcode] 39. 组合总和(Java)(dfs、递归、回溯)

    39. 组合总和 直接暴力思路,用dfs+回溯枚举所有可能组合情况.难点在于每个数可取无数次. 我的枚举思路是: 外层枚举答案数组的长度,即枚举解中的数字个数,从1个开始,到target/ min(c ...

  4. leetcode 39 组合总和 JAVA

    题目: 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制 ...

  5. LeetCode 39. 组合总和(Combination Sum)

    题目描述 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限 ...

  6. leetcode 39. 组合总和(python)

    给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制重复被选 ...

  7. 【LeetCode】39. 组合总和

    39. 组合总和 知识点:递归:回溯:组合:剪枝 题目描述 给定一个无重复元素的正整数数组 candidates 和一个正整数 target ,找出 candidates 中所有可以使数字和为目标数  ...

  8. Java实现 LeetCode 40 组合总和 II(二)

    40. 组合总和 II 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数字在 ...

  9. LeetCode 中级 - 组合总和II(105)

    给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数字在每个组合中只能使用一次. ...

随机推荐

  1. PostGIS 常用函数中文介绍说明

    1.OGC标准函数 管理函数: 添加几何字段 AddGeometryColumn(, , , , , ) 删除几何字段 DropGeometryColumn(, , ) 检查数据库几何字段并在geom ...

  2. YUV图解 (YUV444, YUV422, YUV420, YV12, NV12, NV21)

    背景: 最近在研究音视频,了解YUV这样的格式对于音视频开发比较重要. 虽然这篇文章大部分是转载别人的,但是经过了校对以后,重新排版并补充了一部分内容   概览: 之所以提出yuv格式的原因,是为了解 ...

  3. P1078 字符串压缩与解压

    P1078 字符串压缩与解压 转跳点:

  4. C语言整理复习——指针

    指针是C的精华,不会指针就等于没学C.但指针又是C里最难理解的部分,所以特意写下这篇博客整理思路. 一.指针类型的声明 C的数据类型由整型.浮点型.字符型.布尔型.指针这几部分构成.前四种类型比较好理 ...

  5. Spring Boot 核心注解与配置文件

    @SpringBootApplication注解 Spring Boot项目有一个入口类 (*Application) 在这个类中有一个main 方法,是运行该项目的切入点.而@SpringBootA ...

  6. Day5 - B - Wireless Network POJ - 2236

    An earthquake takes place in Southeast Asia. The ACM (Asia Cooperated Medical team) have set up a wi ...

  7. 056、Java中continue的用法

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  8. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-zoom-in

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  9. NOR Flash驱动

      驱动程序 1 ] ] );81         ;83 }84 85 86 static void __exit nor_exit(void)87 {88         iounmap(nor_ ...

  10. HDU 5501:The Highest Mark 01背包

    The Highest Mark  Accepts: 71  Submissions: 197  Time Limit: 2000/1000 MS (Java/Others)  Memory Limi ...