递归的基本概念

一个函数调用其自身,就是递归

递归的作用

1) 替代多重循环

2) 解决本来就是用递归形式定义的问题

3) 将问题分解为规模更小的子问题进行求解

一行只能有一个皇后,这个根据游戏规则中的皇后的势力就可以得知。

首先先让A皇后放在左上角(0,0),B皇后再从第二行找到合适的位置,以此类推C皇后在第三行找到合适的位置,一直到N皇后,一组解就出来了,但是问题并不是这么简单。

假设现在是4皇后问题,第A个皇后在(0,0)B皇后在(1,3)

C皇后在(3,1)此时D皇后就无位置可以放置。

细心的你,可能会有疑问,每次D皇后,找不到合适的位置,就去让BC重新寻找位置,当BC皇后在它所处的行,再也找不到合适的位置,A皇后的位置就需要变动了。棋盘上就一个皇后A,寻找他的合适位置只需右移一个位置即可。A皇后位移后,再去为BC皇后找合适位置,如果有合适位置,就再去为D皇后寻找合适的位置;如果BC皇后都没有合适的位置,就需要再次右移A皇后,循环上面的过程。

#include<bits/stdc++.h>
using namespace std;
int N;
int queenPos[100];
/*用来存放算好的皇后位置。最左上角是(0,0)
每一行都有一个只用记录它的列坐标*/
void NQueen(int k);
int main()
{
cin >> N;
NQueen(0); //从第0行开始摆皇后
return 0;
}
void NQueen(int k)
{ //在0~k-1行皇后已经摆好的情况下,摆第k行及其后的皇后
int i;
if(k==N)
{ // N 个皇后已经摆好
for(i=0;i<N;i++)
cout<<queenPos[i]+1<<" ";
cout<<endl;
return ;
}
for(i=0;i<N;i++)
{ //逐尝试第k个皇后的位置
int j;
for( j = 0; j < k; j ++ )
{//和已经摆好的k 个皇后的位置比较,看是否冲突
if(queenPos[j]==i||abs(queenPos[j]-i)==abs(k-j)) break;
//冲突,则试下一个位置
}
if( j == k )
{ //当前选的位置i 不冲突
queenPos[k] = i; //将第k个皇后摆放在位置i
NQueen(k+1);
}
}
}

递归与N皇后问题的更多相关文章

  1. C#中八皇后问题的递归解法——N皇后

    百度测试部2015年10月份的面试题之——八皇后. 八皇后问题的介绍在此.以下是用递归思想实现八皇后-N皇后. 代码如下: using System;using System.Collections. ...

  2. 递归实现N皇后问题

    其实是看到一位名为“活在二次元的伪触”的博主昨天还是前天写了篇这个题材的笔记,觉得有点意思,于是想自己来写写. 其实我发现上述那位同学写N皇后问题写得还不错,文末也会给出这位同学用通过递归的方法实现N ...

  3. java递归求八皇后问题解法

    八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处 ...

  4. 用递归求n皇后问题

    此问题是指在n*n的国际象棋棋盘上 ,放置n个皇后,使得这n个皇后均不在,同一行,同一列,同一对角线上,求出合法的方案的数目. 本题可以简单转化为就是求n的全排列中的数放在棋盘上使得这几组数,符合均不 ...

  5. 栈(stack)、递归(八皇后问题)、排序算法分类,时间和空间复杂度简介

    一.栈的介绍: 1)栈的英文为(stack)2)栈是一个先入后出(FILO-First In Last Out)的有序列表.3)栈(stack)是限制线性表中元素的插入和删除只能在线性表的同一端进行的 ...

  6. 算法篇【递归2 -- N皇后问题】

    问题:输入整数N,要求在N*N的棋盘上,互相不能攻击,不在同一行同一列上,切不在对角线上,输出全部方案. 输入: 4 输出: 2  4  1  3 3  1  4  2 思路: 假设在前k-1个摆好的 ...

  7. 递归-N皇后问题

    // // #include <stdio.h> /*可以用回溯,但是我已经不太熟悉回溯了!!!!!!!!呜呜呜 * */ #include <iostream> #inclu ...

  8. 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,循环控制及其优化

    上两篇博客 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,数据结构“栈”实现 研究了递归方法实现回溯,解决N皇后问题,下面我们来 ...

  9. N皇后问题(递归)

    //八皇后递归解法 //#include<iostream> //using namespace std; #include<stdio.h> ] = {-,-,-,-,-,- ...

随机推荐

  1. kali2016&2019的安装使用

    先解释一下,为什么要说2016&2019哪,这是因为有一些测试靶机环境在2016以上的系统安装不通过,所以有时候会特意找2016的镜像来用. 一.下载镜像 1.下载镜像当然要到官方去下载了: ...

  2. Linux服务器架设篇,Windows中的虚拟机linux上不了外网怎么办?

    1.将电脑的网线口直连路由器内网接口(确保该路由器可以直接正常上网,切记不可以使用宽带连接和无线网连接). 2.在实体机电脑可以上网的前提下,在命令框窗口输入 ipconfig 3.记录下电脑以太网的 ...

  3. asap异步执行实现原理

    目录 为什么分析asap asap概述 asap源码解析-Node版 参考 1.为什么分析asap 在之前的文章 async和await是如何实现异步编程? 中的浅谈Promise如何实现异步执行小节 ...

  4. 十年测试老鸟告诉你--自动化测试选JAVA还是选Python--写给还在迷茫中的朋友

    一.前言 Python和Java哪个更适合做自动化测试?这是很多测试工程师从功能跨入自动化纠结的问题,今天测试老鸟来带大家详细分析一下!写给还在迷茫中的朋友! 首先可以确认的是提出这个问题的肯定是一个 ...

  5. jsonpath 字典中取值

    jsonpath 第三方模块 def getsign(): url="http://api.nnzhp.cn/api/user/login" data = {"usern ...

  6. 【硬核】使用替罪羊树实现KD-Tree的增删改查

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习的第16篇文章,我们来继续上周KD-Tree的话题. 如果有没有看过上篇文章或者是最新关注的小伙伴,可以点击一下下方的传送门: ...

  7. k8s中token过期重新生成

    k8s中token过期重新生成 通过kubeadm初始化之后,都会提供node加入的token 默认的token的有效期是24小时,当过期了,如何新生成呢 重新生成token: [root@k8s-m ...

  8. cmake添加版本号

    vVersion.cmake文件内容如下: #vversion.cmake #vDateTime string(TIMESTAMP vDateTime "%Y%m%d-%H%M%S" ...

  9. spring 中 hibernate 的 2种 配置方式(新旧 2种方式)

    Spring对hibernate配置文件hibernate.cfg.xml的集成,来取代hibernate.cfg.xml的配置 Spring对hibernate配置文件hibernate.cfg.x ...

  10. 数据结构和算法(Golang实现)(12)常见数据结构-链表

    链表 讲数据结构就离不开讲链表.因为数据结构是用来组织数据的,如何将一个数据关联到另外一个数据呢?链表可以将数据和数据之间关联起来,从一个数据指向另外一个数据. 一.链表 定义: 链表由一个个数据节点 ...