图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)
Description
Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very long contact list in her cell phone. The contact list has become so long that it often takes a long time for her to browse through the whole list to find a friend's number. As Jamie's best friend and a programming genius, you suggest that she group the contact list and minimize the size of the largest group, so that it will be easier for her to search for a friend's number among the groups. Jamie takes your advice and gives you her entire contact list containing her friends' names, the number of groups she wishes to have and what groups every friend could belong to. Your task is to write a program that takes the list and organizes it into groups such that each friend appears in only one of those groups and the size of the largest group is minimized.
Input
There will be at most 20 test cases. Ease case starts with a line containing two integers N and M. where N is the length of the contact list and M is the number of groups. N lines then follow. Each line contains a friend's name and the groups the friend could belong to. You can assume N is no more than 1000 and M is no more than 500. The names will contain alphabet letters only and will be no longer than 15 characters. No two friends have the same name. The group label is an integer between 0 and M - 1. After the last test case, there is a single line `0 0' that terminates the input.
Output
For each test case, output a line containing a single integer, the size of the largest contact group.
Sample Input
3 2
John 0 1
Rose 1
Mary 1
5 4
ACM 1 2 3
ICPC 0 1
Asian 0 2 3
Regional 1 2
ShangHai 0 2
0 0
Sample Output
2
2
设二分值为X,判断是否在小于X的值以内,是否有可行解。以此进行二分。
建图,要限流,就是每个点都单独建一条边X到汇点,看是否满流。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=1500+5;
struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
};
struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn];
void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;i++) G[i].clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a -=f;
if(a==0) break;
}
}
return flow;
}
int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans +=DFS(s,INF);
}
return ans;
}
}DC;
int n,m;
vector<int> g[maxn];//g[i]中保存第i个人可被分到的组编号
bool solve(int limit)
{
int src=0, dst=n+m+1;
DC.init(2+n+m,src,dst);
for(int i=1;i<=n;i++) DC.AddEdge(src,i,1);
for(int i=1;i<=m;i++) DC.AddEdge(n+i,dst,limit);
for(int i=1;i<=n;i++)
for(int j=0;j<g[i].size();++j)
DC.AddEdge(i,g[i][j],1);
return DC.max_flow() == n;
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
if(n==0 && m==0) break;
for(int i=1;i<=n;i++) g[i].clear();
for(int i=1;i<=n;i++)
{
char str[100];
scanf("%s",str);
while(1)
{
int x;
scanf("%d",&x);
g[i].push_back(x+1+n);//注意这里压入的已经是处理后的编号了
char ch=getchar();
if(ch=='\n') break;
}
}
int L=0,R=n;
while(R>L)
{
int mid=L+(R-L)/2;
if(solve(mid)) R=mid;
else L=mid+1;
}
printf("%d\n",R);
}
return 0;
}
图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)的更多相关文章
- POJ 2289 Jamie's Contact Groups (二分+最大流)
题目大意: 有n个人,可以分成m个组,现在给出你每个人可以去的组的编号,求分成的m组中人数最多的组最少可以有多少人. 算法讨论: 首先喷一下这题的输入,太恶心了. 然后说算法:最多的最少,二分的字眼. ...
- Poj 2289 Jamie's Contact Groups (二分+二分图多重匹配)
题目链接: Poj 2289 Jamie's Contact Groups 题目描述: 给出n个人的名单和每个人可以被分到的组,问将n个人分到m个组内,并且人数最多的组人数要尽量少,问人数最多的组有多 ...
- POJ 2289 Jamie's Contact Groups / UVA 1345 Jamie's Contact Groups / ZOJ 2399 Jamie's Contact Groups / HDU 1699 Jamie's Contact Groups / SCU 1996 Jamie's Contact Groups (二分,二分图匹配)
POJ 2289 Jamie's Contact Groups / UVA 1345 Jamie's Contact Groups / ZOJ 2399 Jamie's Contact Groups ...
- poj 2289 Jamie's Contact Groups【二分+最大流】【二分图多重匹配问题】
题目链接:http://poj.org/problem?id=2289 Jamie's Contact Groups Time Limit: 7000MS Memory Limit: 65536K ...
- POJ 2289——Jamie's Contact Groups——————【多重匹配、二分枚举匹配次数】
Jamie's Contact Groups Time Limit:7000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I ...
- POJ 2289 Jamie's Contact Groups 二分图多重匹配 难度:1
Jamie's Contact Groups Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 6511 Accepted: ...
- POJ 2289 Jamie's Contact Groups & POJ3189 Steady Cow Assignment
这两道题目都是多重二分匹配+枚举的做法,或者可以用网络流,实际上二分匹配也就实质是网络流,通过枚举区间,然后建立相应的图,判断该区间是否符合要求,并进一步缩小范围,直到求出解.不同之处在对是否满足条件 ...
- POJ 2289 Jamie's Contact Groups(多重匹配+二分)
题意: Jamie有很多联系人,但是很不方便管理,他想把这些联系人分成组,已知这些联系人可以被分到哪个组中去,而且要求每个组的联系人上限最小,即有一整数k,使每个组的联系人数都不大于k,问这个k最小是 ...
- POJ 2289 Jamie's Contact Groups
二分答案+网络最大流 #include<cstdio> #include<cstring> #include<cmath> #include<vector&g ...
随机推荐
- 彻底卸载----LoadRunner
保证所有LoadRunner的相关进程(包括Controller.VuGen.Analysis和Agent Process)全部关闭: 备份好LoadRunner安装目录下测试脚本,这些脚本一般存放在 ...
- 【python实现卷积神经网络】padding2D层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- AJ学IOS(35)UI之Quartz2D仿真支付宝手势解锁_代理获得密码。
AJ分享,必须精品 效果: 实现步骤 其实这个实现起来不难 第一步先放好主要的UI,一张背景图和一个View 第二部就是把9个button放到view中,设置好按钮的默认和选中图片. 注意:创建时候的 ...
- sql 系统表协助集合
一.判断字段是否存在: select * from syscolumns where id=object_id('表') and name='字段'
- 哈密顿绕行世界问题 HDU2181
题目大意都比较简单,用vector存一下图,然后爆搜就可以了. #include<bits/stdc++.h> using namespace std; ; vector<]; bo ...
- 最短路变短了 (思维+反向djstrea)
题解:设有一条边x->y,数组dis1[i]表示从1到i的最短距离,dis2[i]表示从n到i的最短距离. 1 如果说将x->y反向之前没有经过x->y,但是反向后我经过了x,y说明 ...
- Java 8 到 Java 14,改变了哪些你写代码的方式?
前几天,JDK 14 正式发布了,这次发布的新版本一共包含了16个新的特性. 其实,从Java8 到 Java14 ,真正的改变了程序员写代码的方式的特性并不多,我们这篇文章就来看一下都有哪些. La ...
- 4. git log的常见用法
git log ======见https://blog.csdn.net/daguanjia11/article/details/73823617 +++++++++++++++++++++++ 使用 ...
- Python神库分享之geoip2 IP定位库
先安装这两个 pip install python-geoip-geolite2 -i https://pypi.douban.com/simple pip install geoip2 然后下载资源 ...
- CSS躬行记(7)——合成
在图形编辑软件中,可以按特定地方式处理不同图层的合成,最新的CSS规范也引入了该功能,并提供了mix-blend-mode和background-blend-mode两个属性.混合模式(blendin ...